精英家教网 > 高中数学 > 题目详情
定义在[-1,1]上的奇函数f(x),已知当x∈[-1,0]时,(a∈R),
(Ⅰ)写出f(x)在[0,1]上的解析式;
(Ⅱ)求f(x)在[0,1]上的最大值;
(Ⅲ)若f(x)是[0,1]上的增函数,求实数a的取值范围。
解:(Ⅰ)设x∈[0,1],则-x∈[-1,0],


(Ⅱ)∵
令t=2x,t∈[1,2],

,即a≤2时,g(t)max=g(1)=a-1;
,即2<a<4时,
,即a≥4时,g(t)max=g(2)=2a-4;
综上:当a≤2时,f(x)最大的值为a-1;当2<a<4时,f(x)最大值为;当a≥4时,f(x)最大值为2a-4。
(Ⅲ)因为函数f(x)在[0,1]上是增函数,
所以f′(x)=aln2·2x-ln4·4x=2xln2(a-2·2x)≥0恒成立,
∴a-2·2x≥0恒成立,a≥2·2x恒成立,
∵2x∈[ 1,2],
∴a≥4.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)是定义在[-1,1]上的奇函数,且其图象上任意两点连线的斜率均小于零.
(1)证明f(x)在[-1,1]上是减函数;
(2)如果f(x-c),f(x-c2)的定义域的交集为空集,求实数c的取值范围;
(3)证明:若-1≤c≤2,则f(x-c),f(x-c2)存在公共的定义域,并求出这个公共的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在[-1,1]上的奇函数f(x),当-1≤x<0时,f(x)=-
2x
4x+1

(Ⅰ)求f(x)在[-1,1]上解析式;
(Ⅱ)判断f(x)在(0,1)上的单调性,并给予证明;
(Ⅲ)当x∈(0,1]时,关于x的方程
2x
f(x)
-2x+λ=0
有解,试求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设f(x)是定义在[-1,1]上的奇函数,且其图象上任意两点连线的斜率均小于零.
(1)证明f(x)在[-1,1]上是减函数;
(2)如果f(x-c),f(x-c2)的定义域的交集为空集,求实数c的取值范围;
(3)证明:若-1≤c≤2,则f(x-c),f(x-c2)存在公共的定义域,并求出这个公共的定义域.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设f(x)是定义在[-1,1]上的奇函数,且其图象上任意两点连线的斜率均小于零.
(1)证明f(x)在[-1,1]上是减函数;
(2)如果f(x-c),f(x-c2)的定义域的交集为空集,求实数c的取值范围;
(3)证明:若-1≤c≤2,则f(x-c),f(x-c2)存在公共的定义域,并求出这个公共的定义域.

查看答案和解析>>

科目:高中数学 来源:江苏省泰州市中学高三数学一轮复习过关测试卷:函数(1)(解析版) 题型:解答题

设f(x)是定义在[-1,1]上的奇函数,且其图象上任意两点连线的斜率均小于零.
(1)证明f(x)在[-1,1]上是减函数;
(2)如果f(x-c),f(x-c2)的定义域的交集为空集,求实数c的取值范围;
(3)证明:若-1≤c≤2,则f(x-c),f(x-c2)存在公共的定义域,并求出这个公共的定义域.

查看答案和解析>>

同步练习册答案