| A. | [0,$\frac{π}{4}$) | B. | [$\frac{π}{4}$,$\frac{π}{2}$) | C. | ($\frac{π}{2}$,$\frac{3π}{4}$] | D. | [$\frac{3π}{4}$,π) |
分析 利用导数在切点处的值是曲线的切线斜率,再根据斜率等于倾斜角的正切值求出角的范围.
解答 解:因为y=$\frac{4}{{e}^{x}+1}$上的导数为y′=-$\frac{4{e}^{x}}{({e}^{x}+1)^{2}}$=-$\frac{4}{{e}^{x}+\frac{1}{{e}^{x}}+2}$,
∵ex+e-x≥2$\sqrt{{e}^{x}\frac{1}{{e}^{x}}}$=2,
∴ex+e-x+2≥4,
∴y′∈[-1,0)
即tanα∈[-1,0),
∵0≤α<π
∴$\frac{3}{4}$π≤α<π.
即α的取值范围是[$\frac{3}{4}$π,π).
故选:D
点评 本题主要考查直线的斜率关系、导数的几何意义.属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 0 | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 平均数是10,方差是2 | B. | 平均数是11,方差是3 | ||
| C. | 平均数是11,方差是2 | D. | 平均数是14,方差是4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com