精英家教网 > 高中数学 > 题目详情
椭圆
x2
a2
+
y2
b2
=1(a>b>0)
上存在一点M,它到左焦点的距离是它到右准线距离的2倍,则椭圆离心率的最小值为
 
分析:设它到左焦点的距离是|MF1|,则到右准线距离d,它到右焦点的距离是|MF2|,由椭圆第二定义,求得
c
a
即e的范围,进而求得e的最小值.
解答:解:设P到直线l的距离为d,
根据椭圆的第二定义得
|MF2|
d
=e=
c
a
,|MF1|=2d,且|MF1|+|MF2|=2a,
则|MF1|=2a-|PF2|=2a-
2ac
2a+c
,而|MF1|∈(a-c,a+c),
所以得到
2a-
2ac
2a+c
≥a-c①
2a-
2ac
2a+c
≤a+c②
,由①得:(
c
a
)
2
+
c
a
+2≥0,
c
a
为任意实数;
由②得:(
c
a
)
2
+3
c
a
-2≥0,解得
c
a
-3+
17
2
c
a
-3-
17
2
(舍去),
所以不等式的解集为:
c
a
-3+
17
2
,即离心率e≥
-3+
17
2
,又e<1,
所以椭圆离心率的取值范围是[
-3+
17
2
,1).
故答案为:
17
-3
2
点评:本题主要考查了椭圆的基本性质.属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b
=1(a>b>0)
的左、右焦点分别为F1、F2,离心率e=
2
2
,右准线方程为x=2.
(1)求椭圆的标准方程;
(2)过点F1的直线l与该椭圆交于M、N两点,且|
F2M
+
F2N
|=
2
26
3
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,椭圆
x2
a2
+
y2
b 
=1(a>b>0)与过点A(2,0)B(0,1)的直线有且只有一个公共点T,且椭圆的离心率e=
3
2

(Ⅰ)求椭圆方程;
(Ⅱ)设F1、F2分别为椭圆的左、右焦点,求证:|AT|2=
1
2
|AF1||AF2|

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,椭圆
x2
a2
+
y2
b 
=1(a>b>0)与过点A(2,0)B(0,1)的直线有且只有一个公共点T,且椭圆的离心率e=
3
2

(Ⅰ)求椭圆方程;
(Ⅱ)设F1、F2分别为椭圆的左、右焦点,M为线段AF1的中点,求证:∠ATM=∠AF1T.

查看答案和解析>>

科目:高中数学 来源: 题型:

设 A(x1,y1)、B(x2,y2)是椭圆
x2
a2
+
y2
b2
=1
(a>b>0)上的两点,O为坐标原点,向量
m
=(
x1
a
y1
b
),
n
=(
x2
a
y2
b
)
m
n
=0

(1)若A点坐标为(a,0),求点B的坐标;
(2)设
OM
=cosθ•
OA
+sinθ•
OB
,证明点M在椭圆上;
(3)若点P、Q为椭圆 上的两点,且
PQ
OB
,试问:线段PQ能否被直线OA平分?若能平分,请加以证明;若不能平分,请说明理由.

查看答案和解析>>

科目:高中数学 来源:四川 题型:解答题

已知椭圆
x2
a2
+
y2
b
=1(a>b>0)
的左、右焦点分别为F1、F2,离心率e=
2
2
,右准线方程为x=2.
(1)求椭圆的标准方程;
(2)过点F1的直线l与该椭圆交于M、N两点,且|
F2M
+
F2N
|=
2
26
3
,求直线l的方程.

查看答案和解析>>

同步练习册答案