精英家教网 > 高中数学 > 题目详情
已知, tanθ+secθ=2, 则sinθ的值为

[  ]

A.   B.-  C.±  D.

答案:A
解析:

解∶由已知

sinθ+1

cosθ

=2

  两边平方后得

(1+sinθ)2

1-sin2θ

=4

       整理  5sin2θ+2sinθ-3=0   (5sinθ-3)(sinθ+1)=0

       ∴ sinθ=或sinθ=-1(舍去). 


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(Ⅰ)①证明两角和的余弦公式Cα+β:cos(α+β)=cosαcosβ-sinαsinβ;
②由Cα+β推导两角和的正弦公式Sα+β:sin(α+β)=sinαcosβ+cosαsinβ.
(Ⅱ)已知cosα=-
4
5
,α∈(π,
3
2
π),tanβ=-
1
3
,β∈(
π
2
,π),cos(α+β)
,求cos(α+β).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动点P(3t,t+1)(t≠0,t≠
1
2
)
在角α的终边上.
(1)求tanα;
(2)若α=
π
6
,求实数t的值;
(3)记S=
1-sin2α+cos2α
1-sin2α-cos2α
,试用t将S表示出来.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥S-ABCD中,底面ABCD是等腰梯形,AB∥DC,∠CAB=
π
4
,tan∠ACB=
1
2
,AC交BD于O.
(Ⅰ)若SB⊥平面ABCD,求证:AC⊥平面SBD;
(Ⅱ)已知点E,P分别在SD,SA上,满足3DE=4ES,AP=2PS.
求证:PB∥面EAC.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)写出与
π
4
终边相同角的集合S,并且把S中适合不等式-2π≤β<4π的元素β写出来.
(2)已知tanα=-
1
3
,计算
sinα+2cosα
5cosα-sinα

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的右焦点F2与抛物线y2=4x的焦点重合,过F2作与x轴垂直的直线交椭圆于S,T两点,交抛物线于C,D两点,且
|CD|
|ST|
=2
2

(I)求椭圆E的标准方程;
(Ⅱ)设Q(2,0),过点(-1,0)的直线l交椭圆E于M、N两点.
(i)当
QM
QN
=
19
3
时,求直线l的方程;
(ii)记△QMN的面积为S,若对满足条件的任意直线l,不等式S>λtan∠MQN恒成立,求λ的最小值.

查看答案和解析>>

同步练习册答案