精英家教网 > 高中数学 > 题目详情
提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.
(I) 当0≤x≤200时,求函数v(x)的表达式;
(II) 当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=xv(x)可以达到最大,并求出最大值.(精确到1辆/小时).
解:(I) 由题意:当0≤x≤20时,v(x)=60;当20<x≤200时,设v(x)=ax+b
再由已知得,解得
故函数v(x)的表达式为
(II)依题并由(I)可得
当0≤x<20时,f(x)为增函数,
故当x=20时,其最大值为60×20=1200
当20≤x≤200时,
当且仅当x=200﹣x,即x=100时,等号成立.
所以,当x=100时,f(x)在区间(20,200]上取得最大值
综上所述,当x=100时,f(x)在区间[0,200]上取得最大值为,即当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时.
答:(I) 函数v(x)的表达式
(II) 当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时.
练习册系列答案
相关习题

科目:高中数学 来源:安徽省期中题 题型:解答题

已知二次函数f( x )=x2+ax+b关于x=1对称,且其图象经过原点.
(1)求这个函数的解析式;
(2)求函数在x∈(0,3]的值域

查看答案和解析>>

科目:高中数学 来源:江苏月考题 题型:解答题

已知二次函数g(x)对任意实数x都满足g(x﹣1)+g(1﹣x)=x2﹣2x﹣1,且g(1)=﹣1.令
(1)求g(x)的表达式;
(2)若x>0使f(x)≤0成立,求实数m的取值范围;
(3)设1<m≤e,H(x)=f(x)﹣(m+1)x,
证明:对x1,x2∈[1,m],恒有|H(x1)﹣H(x2)|<1.

查看答案和解析>>

科目:高中数学 来源:期末题 题型:解答题

某企业生产A、B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位是万元)
(1)分别将A、B两种产品的利润表示为投资的函数,并写出它们的函数关系式;
(2)该企业已筹集到10万元资金,并全部投入A、B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元?

查看答案和解析>>

科目:高中数学 来源:陕西省期末题 题型:解答题

设f(x)为二次函数,且f(1)=1,f(x+1)﹣f(x)=1﹣4x.
(1)求f(x)的解析式;
(2)设g(x)=f(x)﹣x﹣a,若函数g(x)在实数R上没有零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:广东省月考题 题型:解答题

某商品进货单价为40元,若销售价为50元,可卖出50个,如果销售单价每涨1元,销售量就减少1个,为了获得最大利润,则此商品的最佳售价应为多少?

查看答案和解析>>

科目:高中数学 来源:安徽省期中题 题型:解答题

已知二次函数f(x)的最小值为1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在区间[2a,a+1]上不单调,求实数a的取值范围;
(3)在区间[﹣1,1]上,y=f(x)的图象恒在y=2x+2m+1的图象上方,试确定实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:北京期中题 题型:解答题

已知f(x)的定义域为{x∈R|x≠0},且f(x)是奇函数,当x>0时,f(x)=﹣x2+bx+c,若f(1)=f(3),f(2)=2
(1)求b,c的值;
(2)求f(x)在x<0时的表达式;
(3)若关于x的方程f(x)=ax,(a∈R)有解,求a的取值范围

查看答案和解析>>

科目:高中数学 来源:0123 月考题 题型:填空题

给出下列四个命题:
①函数y=|x|与函数表示同一个函数;
②奇函数的图像一定通过直角坐标系的原点;
③函数y=3(x-1)2的图像可由y=3x2的图像向右平移1个单位得到;
④若函数f(x)的定义域为[0,2],则函数f(2x)的定义域为[0,4];
⑤设函数f(x)是在区间[a,b]上图像连续的函数,且f(a)·f(b)<0,则方程f(x)=0在区间[a,b]上至少有一实根;
其中正确命题的序号是(    )。(填上所有正确命题的序号)

查看答案和解析>>

同步练习册答案