(本小题满分12分)
如图,在底面是正方形的四棱锥P—ABCD中,PA⊥面ABCD,BD交AC于点E,F是PC中点,G为AC上一点.
(1)求证:BD⊥FG;
(2)确定点G在线段AC上的位置,使FG//平面PBD,
并说明理由.
(3)当二面角B—PC—D的大小为
时,求PC与
底面ABCD所成角的正切值.
方法一:(I)
面ABCD,四边形ABCD是正方形,
其对角线BD,AC交于点E,∴PA⊥BD,AC⊥BD
∴BD⊥平面APC,
平面PAC,
∴BD⊥FG …………3分
(II)当G为EC中点,即
时,FG//平面PBD, …………4分
理由如下:
连接PE,由F为PC中点,G为EC中点,知FG//PE,
而FG
平面PBD,PB
平面PBD, 故FG//平面PBD. …………7分
(III)作BH⊥PC于H,连结DH,
∵PA⊥面ABCD,四边形ABCD是正方形,
∴PB=PD,
又∵BC=DC,PC=PC,
∴△PCB≌△PCD,
∴DH⊥PC,且DH=BH,
∴∠BHD主是二面角B—PC—D的平面角, …………9分
即![]()
∵PA⊥面ABCD,
∴∠PCA就是PC与底面ABCD所成的角 ………10分
连结EH,则![]()
![]()
![]()
![]()
∴PC与底面ABCD所成角的正切值是
…………12分
方法二解:以A为原点,AB,AD,PA所在的直线分别为x,y,z轴建立空间直角坐标系如图所示,
设正方形ABCD的边长为1,则A(0,0,0),B(1,0,0),C(1,1,0)
D(0,1,0),P(0,0,a)(a>0),![]()
(I)![]()
|
…………3分
(II)要使FG//平面PBD,只需FG//EP,
而
,
由
可得
,解得![]()
…………6分
![]()
故当
时,FG//平面PBD …………7分
设平面PBC的一个法向量为![]()
则
,而![]()
,取z=1,得
,
同理可得平面PBC的一个法向量![]()
设
所成的角为0,
则![]()
即![]()
…………10分
∵PA⊥面ABCD,∴∠PCA就是PC与底面ABCD所成的角,
∴PC与底面ABCD所成角的正切值是
…………12分
科目:高中数学 来源: 题型:
| ON |
| ON |
| 5 |
| OM |
| OT |
| M1M |
| N1N |
| OP |
| OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的
、
、
.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
![]()
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com