精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3+2f′(x)x,x∈[-3,3]
(1)求f(x)的极值;
(2)讨论关于x的方程f(x)=m的实根个数.
分析:(1)求导数.利用导数求极值.(2)根据(1)求出函数f(x)的极值和最值即可.
解答:解:(1)函数的导数f'(x)=3x2+2f'(1),令x=1得,f'(1)=3+2f'(1),解得f'(1)=-3.
所以f(x)=x3-6x,f′(x)=3x2-6x=3(x-
2
)(x+
2
)

列表:当x变化时,f'(x),f(x)的变化情况如下表:
 x -3  (-3,-
2
 -
2
 (-
2
2
 
2
 (
2
,3
 3
 f'(x)   +   -   +  
 f(x) -9  递增  4
2
 递减  -4
2
 递增  9
所以当x=-
2
时,取得极大值 f(x)=4
2
,当x=
2
时,取得极小值 f(x)=-4
2

(2)由(1)可以作出函数f(x)=x3-6x在[-3,3]上的大致图象如图:
当m∈(-∞,-9)∪(9,+∞)时,方程无实数根;
当m∈[-9,-4
2
)∪(4
2
,9]时,方程有一个实数根;
当m=-4
2
或m=4
2
时,方程有两个不等的实数根;
当m∈(-4
2
,4
2
)时,方程有三个不等的实数根.
点评:本题考查了利用导数研究函数的极值和最值,以及函数图象的交点个数问题,运算量较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案