精英家教网 > 高中数学 > 题目详情
已知tan(α+
π
4
)=
1
2
,则tanα的值为(  )
分析:把已知等式左边利用两角和与差的正切函数公式及特殊角的三角函数值化简,得到关于tanα的方程,求出方程的解即可得到tanα的值.
解答:解:∵tan(α+
π
4
)=
1
2
,且tan(α+
π
4
)=
tanα+1
1-tanα

tanα+1
1-tanα
=
1
2
,即2tanα+2=1-tanα,
解得:tanα=-
1
3

故选C
点评:此题考查了两角和与差的正切函数公式,以及特殊角的三角函数值,熟练掌握公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知tan(x+
π4
)=2
,则tan2x=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)将形如
.
а11а12
а21а22
.
的符号称二阶行列式,现规定
.
а11а12
а21а22
.
=a11a22-a12a21
试计算二阶行列式
.
cos
π
4
      1
1cos
π
3
.
的值;
(2)已知tan(
π
4
+a)=-
1
2
,求
sin2a-2cos2a
1+tana

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tan(
π
4
+α)=2,则tan(
π
4
-α)的值为
1
2
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tan(
π
4
+α)=
1
2
,则
sin2α-cos2α
1+cos2α
的值为
-
5
6
-
5
6

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浙江模拟)已知tan(α+
π
4
)=2,则tanα=(  )

查看答案和解析>>

同步练习册答案