精英家教网 > 高中数学 > 题目详情
(2012•唐山二模)已知f(x)=
1
2
x
2
 
-
a
2
 
lnx,a>0

(I)求函数f(x)的最小值;
( II)(i)设0<t<a,证明:f(a+t)<f(a-t).
(ii)若f(x1)=f(x2),且x1≠x2.证明:x1+x2>2a.
分析:(Ⅰ)确定函数的定义域,并求导函数,确定函数的单调性,可得x=a时,f(x)取得极小值也是最小值;
(Ⅱ)(ⅰ)构造函数g(t)=f(a+t)-f(a-t),当0<t<a时,求导函数,可知g(t)在(0,a)单调递减,所以g(t)<g(0)=0,即可证得;
(ⅱ)由(Ⅰ),f(x)在(0,a)单调递减,在(a,+∞)单调递增,不失一般性,设0<x1<a<x2,所以0<a-x1<a,利用(ⅰ)即可证得结论.
解答:(Ⅰ)解:函数的定义域为(0,+∞).求导数,可得f′(x)=x-
a2
x
=
(x+a)(x-a)
x
.…(1分)
当x∈(0,a)时,f′(x)<0,f(x)单调递减;当x∈(a,+∞)时,f′(x)>0,f(x)单调递增.
当x=a时,f(x)取得极小值也是最小值f(a)=
1
2
a2-a2lna.…(4分)
(Ⅱ)证明:(ⅰ)设g(t)=f(a+t)-f(a-t),则
当0<t<a时,g′(t)=f′(a+t)+f′(a-t)=a+t-
a2
a+t
+a-t-
a2
a-t
=
2at2
t2-a2
<0,…(6分)
所以g(t)在(0,a)单调递减,g(t)<g(0)=0,即f(a+t)-f(a-t)<0,
故f(a+t)<f(a-t).…(8分)
(ⅱ)由(Ⅰ),f(x)在(0,a)单调递减,在(a,+∞)单调递增,
不失一般性,设0<x1<a<x2
因0<a-x1<a,则由(ⅰ),得f(2a-x1)=f(a+(a-x1))<f(a-(a-x1))=f(x1)=f(x2),…(11分)
又2a-x1,x2∈(a,+∞),
故2a-x1<x2,即x1+x2>2a.…(12分)
点评:本题考查导数知识的运用,考查函数的单调性、极值、最值,考查不等式的证明,解题的关键是构造函数,确定函数的单调性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•唐山二模)设变量x、y满足
x+y≥1
x-y≥0
2x-y-2≤0
,则目标函数z=2x+y的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•唐山二模)已知α是第三象限的角,且tanα=2,则sin(α+
π
4
)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•唐山二模)奇函数f(x)、偶函数g(x)的图象分别如图1、2所示,方程f(g(x))=0、g(f(x))=0的实根个数分别为a、b,则a+b=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•唐山二模)曲线y=
x-1
x+1
在点(0,-1)处的切线及直线x=1所围成的封闭图形的面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•唐山二模)函数y=
1
1
0
x
 
-2
的定义域为
(lg2,+∞)
(lg2,+∞)

查看答案和解析>>

同步练习册答案