精英家教网 > 高中数学 > 题目详情
如图6,AB是直径,CD⊥AB于D,CD=43,AD∶DB=3∶1,则直径的长为________.

             

     图6

思路解析:直接利用相交弦定理的推论可得CD2=AD·BD,代入数值即得结果.

∵AB是直径,CD⊥AB于D,∴CD2=AD·BD.

∵AD∶DB=3∶1,设DB=x,则AD=3x.

∴(4)2=3x·x.

∴x=4.

∴AB=16.

答案:16

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

21、如图,圆O的直径AB=6,CD是圆O的弦,BA,DC的延长线交于点P,若PA=4,PC=5,求CD及∠CBD.

查看答案和解析>>

科目:高中数学 来源: 题型:

在A、B、C、D四小题中只能选做2题,每小题10分,共计20分.请在答题纸指定区域内 作答.解答应写出文字说明、证明过程或演算步骤.
A.如图,圆O的直径AB=6,C为圆周上一点,BC=3,过C作圆的切线l,过A作l的垂线AD,AD分别与直线l、圆交于点D、E.求∠DAC的度数与线段AE的长.
B.已知二阶矩阵A=
2a
b0
属于特征值-1的一个特征向量为
1
-3
,求矩阵A的逆矩阵.

C.已知极坐标系的极点在直角坐标系的原点,极轴与x轴的正半轴重合,曲线C的极坐标方程ρ2cos2θ+3ρ2sin2θ=3,直线l的参数方程为
x=-
3
t
y=1+t
(t为参数,t∈{R}).试求曲线C上点M到直线l的距离的最大值.
D.(1)设x是正数,求证:(1+x)(1+x2)(1+x3)≥8x3
(2)若x∈R,不等式(1+x)(1+x2)(1+x3)≥8x3是否仍然成立?如果仍成立,请给出证明;如果不成立,请举出一个使它不成立的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

[选做题]在A、B、C、D四小题中只能选做2题,每小题10分,计20分.请把答案写在答题纸的指定区域内.
A.(选修4-1:几何证明选讲)
如图,圆O的直径AB=8,C为圆周上一点,BC=4,过C作圆的切线l,过A作直线l的垂线AD,D为垂足,AD与圆O交于点E,求线段AE的长.
B.(选修4-2:矩阵与变换)
已知二阶矩阵A有特征值λ1=3及其对应的一个特征向量α1=
1
1
,特征值λ2=-1及其对应的一个特征向量α2=
1
-1
,求矩阵A的逆矩阵A-1
C.(选修4-4:坐标系与参数方程)
以平面直角坐标系的原点O为极点,x轴的正半轴为极轴,建立极坐标系(两种坐标系中取相同的单位长度),已知点A的直角坐标为(-2,6),点B的极坐标为(4,
π
2
)
,直线l过点A且倾斜角为
π
4
,圆C以点B为圆心,4为半径,试求直线l的参数方程和圆C的极坐标方程.
D.(选修4-5:不等式选讲)
设a,b,c,d都是正数,且x=
a2+b2
y=
c2+d2
.求证:xy≥
(ac+bd)(ad+bc)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图2-1,AB是⊙O的直径,C为半圆上一点,CDABD,若BC=3,AC=4,则ADCDBD等于……(  )

图2-1

A.4∶6∶3                              B.6∶4∶3

C.4∶4∶3                              D.16∶12∶9

查看答案和解析>>

同步练习册答案