精英家教网 > 高中数学 > 题目详情

已知函数f(x)=log4(4x+1)+kx(k∈R)为偶函数.

(1)求k的值;

(2)若方程f(x)=log4(a·2x-a)有且只有一个根,求实数a的取值范围.

(1)因为f(x)为偶函数,所以f(-x)=f(x),

log4(4-x+1)-kx=log4(4x+1)+kx,

log4-log4(4x+1)=2kx⇒(2k+1)x=0

⇒k=-.

(2)依题意知:log4(4x+1)-x=log4(a·2xa)

令t=2x,则(*)变为(1-a)t2+at+1=0只需其有一正根.

①若a=1,则t=-1不合题意.

②若(*)式有一正一负根,则

∴a>1,

经验证知a>1时满足a·2x-a>0,∴a>1.

③两实根相等,Δ=0⇒a=±2-2.

当a=-2-2时,方程(1-a)t2+at+1=0的根为t=2x

此时满足2x·a-a>0.

当a=2-2时,方程(1-a)t2+at+1=0的根为t=2x

,不满足a·2x-a>0,

∴a=-2-2,

综上所述,a>1或a=-2-2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ax2-2x+1,g(x)=ln(x+1).

(1)求函数y=g(x)-x在[0,1]上的最小值;

(2)当a≥时,函数t(x)=f(x)+g(x)的图像记为曲线C,曲线C在点(0,1)处的切线为l,是否存在a使l与曲线C有且仅有一个公共点?若存在,求出所有a的值;否则,说明理由.

(3)当x≥0时,g(x)≥-f(x)+恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2014届湖北省大治二中高二3月联考文科数学试卷(解析版) 题型:解答题

已知函数f(x)=x3+x-16,

(1)求曲线y=f(x)在点(2,-6)处的切线的方程;

(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标;

 

查看答案和解析>>

科目:高中数学 来源:2012年陕西省高二下期第一次月考理科数学试卷(解析版) 题型:解答题

已知函数f(x)=x3-3x及y=f(x)上一点P(1,-2),过点P作直线l.

(1)求使直线l和y=f(x)相切且以P为切点的直线方程;

(2)求使直线l和y=f(x)相切且切点异于P的直线方程.

 

查看答案和解析>>

科目:高中数学 来源:新课标高三数学导数专项训练(河北) 题型:解答题

已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在x=1处的切线为l:3x-y+1=0,当x=时,y=f(x)有极值.

(1)求a、b、c的值;

(2)求y=f(x)在[-3,1]上的最大值和最小值.

 

查看答案和解析>>

科目:高中数学 来源:新课标高三数学导数专项训练(河北) 题型:解答题

已知函数f(x)=x3-2x2+ax(x∈R,a∈R),在曲线y=f(x)的所有切线中,有且仅有一条切线l与直线y=x垂直.

(1)求a的值和切线l的方程;

(2)设曲线y=f(x)上任一点处的切线的倾斜角为θ,求θ的取值范围

 

查看答案和解析>>

同步练习册答案