精英家教网 > 高中数学 > 题目详情

 

(1)若在[1,上递增,求的取值范围;

(2)求在[1,4]上的最小值

 

【答案】

 

 

 

(2)由    

(a)当时,在   ∴     …………8分

(b)当时,在  ∴…10分

(c)当时,在,在

此时                  

综上所述:

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设P(a,b)(b≠0)是平面直角坐标系xOy中的点,l是经过原点与点(1,b)的直线,记Q是直线l与抛物线x2=2py(p≠0)的异于原点的交点
(1)若a=1,b=2,p=2,求点Q的坐标
(2)若点P(a,b)(ab≠0)在椭圆
x2
4
+y2=1上,p=
1
2ab

求证:点Q落在双曲线4x2-4y2=1上
(3)若动点P(a,b)满足ab≠0,p=
1
2ab
,若点Q始终落在一条关于x轴对称的抛物线上,试问动点P的轨迹落在哪种二次曲线上,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两个向量
a
b
满足|
a
|=2,|
b
|=1,
a
b
的夹角为60°,
m
=2x
a
+7
b
n
=
a
+x
b
,x∈R.
(1)若
m
n
的夹角为钝角,求x的取值范围;
(2)设函数f(x)=
m
n
,求f(x)在[-1,1]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•厦门模拟)已知:f(x)=x+
a+1
x
(a∈R),g(x)=lnx

(I)若f′(1)=2,求a的值;
(Ⅱ)已知a>e-1,若在[1,e](e=2.718…)上存在一点x0,使得f(x0)<ag(x0)成立,求a的取值范围;
(Ⅲ)设函数g(x)的图象C1与函数y=
1
2
x
2
 
+bx的图象C2交于点A、B,过线段A、B的中点M作x轴的垂线分别交C1、C2于点P、Q,问是否存在点M使C1在P处的切线与C2在Q处的切线平行?若存在,求出M的横坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(附加题)已知定义在[-1,1]上的奇函数f(x),在x∈(0,1]时,f(x)=
2x4x+1

(1)当x∈[-1,1]时,求f(x)的解析式;
(2)设g(x)=-2x•f(x)(-1<x<0),求函数y=g(x)的值域;
(3)若关于x的不等式λf(x)<1在x∈(0,1]上有解,求实数λ的取值范围.

查看答案和解析>>

同步练习册答案