精英家教网 > 高中数学 > 题目详情
已知等差数列{an}的公差不为零,若S1,S2,S4成等比数列.
(1)求S1,S2,S4的公比;
(2)若S2=4,令bn=
1anan+1
,求{bn}的前n项和Sn
分析:(1)由若Sn是公差不为0的等差数列{an}的前n项和,且S1,S2,S3成等比数列.根据等差数列的前n项和公式,我们易求出基本量(即首项与公差)之间的关系.将基本量代入易得公比;
(2)先求数列的通项,再用裂项法求和即可.
解答:解:(1)设数列{an}的公差为d,由题意,得S22=S1•S4?
所以(2a1+d)2=a1(4a1+6d)
因为d≠0,所以d=2a1
故S1,S2,S4的公比为
S2
S1
=4

(2)由(1)可得
S2
S1
=4
,又由S2=4,
则S1=a1=1,a2=4-1=3,
则d=a2-a1=3-1=2,则an=2n-1,
bn=
1
anan+1
=
1
2
×(
1
2n-1
-
1
2n+1
)

Sn=b1+b2+…+bn=
1
2
×(1-
1
2n+1
)=
n
2n+1

∴{bn}的前n项和为
n
2n+1
点评:解答特殊数列(等差数列与等比数列)的问题时,根据已知条件构造关于基本量的方程,解方程求出基本量,再根据定义确定数列的通项公式及前n项和公式,然后代入进行运算.属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an},公差d不为零,a1=1,且a2,a5,a14成等比数列;
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=an3n-1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中:a3+a5+a7=9,则a5=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足:a5=11,a2+a6=18.
(1)求{an}的通项公式;
(2)若bn=an+q an(q>0),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足a2=0,a6+a8=-10
(1)求数列{an}的通项公式;     
(2)求数列{|an|}的前n项和;
(3)求数列{
an2n-1
}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知等差数列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若{an}为递增数列,请根据如图的程序框图,求输出框中S的值(要求写出解答过程).

查看答案和解析>>

同步练习册答案