精英家教网 > 高中数学 > 题目详情
已知:函数f(x)=|log2x|-(
1
2
)x
有两个零点x1,x2,则有(  )
分析:本题数形结合比较容易看出两个零点的位置,考察函数零点,借助于对数性质综合解决.
解答:解:∵f(x)=|lgx|-(
1
2
)x有两个零点x1,x2,即y=|lgx|与y=2-x的图象有两个交点,
由题意x>0,分别画y=2-x和y=|lgx|的图象,发现在(0,1)和(1,+∞)有两个交点.
不妨设 x1在(0,1)里,x2在(1,+∞)里,
那么在(0,1)上有 2-x1 =-lg(x1),即-2-x1=lgx1,…①
在(2,+∞)有2 -x2 =lg x2 ,…②
①、②相加有 2-x2 -2-x1=lg x1x2
∵x2>x1,∴-x2><-x1,∴2-x2<2-x1,即 2-x2 -2-x1<0.
∴lgx1x2<0,∴0<x1x2<1,
故选A.
点评:本题主要考查确定函数零点所在区间的方法--转化为两个函数的交点问题.函数的零点等价于函数与x轴的交点的横坐标,借助于图象和性质比较简单,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知x0函数f(x)=(
1
3
)x-log2x
的零点,若0<x1<x0,则f(x1)的值为(  )
A、恒为负值B、等于0
C、恒为正值D、不大于0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:函数f(x)=
x2+4x

(1)求:函数f(x)的定义域;
(2)判断函数f(x)的奇偶性并说明理由;
(3)判断函数f(x)在(-∞,-2)上的单调性,并用定义加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知幂函数f(x)=x-m2+2m+3(m∈Z)为偶函数,且在区间(0,+∞)上是单调增函数,则m=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

.已知幂函数f(x)=xk2-2k-3(k∈N*)的图象关于y轴对称,且在区间(0,+∞)上是减函数,
(1)求函数f(x)的解析式;
(2)若a>k,比较(lna)0.7与(lna)0.6的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)=
-x2+2x   (x>0)
0
                (x=0)
x2+mx
     (x<0)
,则m=(  )

查看答案和解析>>

同步练习册答案