精英家教网 > 高中数学 > 题目详情
18.已知正项数列n的前n项和为Sn,且a1=1,an+12=Sn+1+Sn
(1)求数列{an}的通项公式;
(2)设${b_n}={a_{2n-1}}•{2^{a_n}}$,求数列{bn}的前n项和Tn

分析 (1)运用数列的递推式:n=1时,a1=S1,当n≥2时,an=Sn-Sn-1,将n换为n-1,相减,再结合等差数列的定义和通项公式,即可得到所求;
(2)求得数列{bn}的通项,运用错位相减法,结合等比数列的求和公式,化简整理,即可得到所求和.

解答 解:(1)正项数列n的前n项和为Sn,且a1=1,an+12=Sn+1+Sn,①
当n≥2时,an2=Sn+Sn-1
①-②可得an+12-an2=(an+1-an)(an+1+an)=an+1+an
可得an+1-an=1,
则数列{an}是从第二项起,公差为1的等差数列,
a22=S2+S1=a1+a2+a1=2+a2
解得a2=2(-1舍去),
当n≥2时,an=a2+(n-2)d=2+n-2=n;
上式对n=1也成立.
则数列{an}的通项公式an=n(n∈N*);
(2)由(1)得
${b_n}={a_{2n-1}}•{2^{a_n}}=({2n-1})•{2^n},{T_n}=2+3•{2^2}+5•{2^3}+…+({2n-1})•{2^n}$,③
$2{T_n}={2^2}+3•{2^3}+…+({2n-3})•{2^n}+({2n-1})•{2^{n+1}}$,④
③-④得,$-{T_n}=2+2×{2^2}+…+2×{2^n}-({2n-1})•{2^{n+1}}$,
所以$-{T_n}=2+\frac{{{2^3}•({1-{2^{n-1}}})}}{1-2}-({2n-1})•{2^{n+1}}$,
故${T_n}=({2n-3})•{2^{n+1}}+6$.

点评 本题考查数列的通项的求法,注意运用数列的递推式:n=1时,a1=S1,当n≥2时,an=Sn-Sn-1,考查数列的求和方法:错位相减法,同时考查等差数列的通项公式和等比数列的求和公式的运用,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.设集合A={x|x=3n,n∈N*},B={x|x${\;}^{\frac{1}{2}}$≤2},则A∩B=(  )
A.{2}B.{3}C.{2,3,4}D.{1,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若loga(3a-1)>0,则a的取值范围是(  )
A.a<$\frac{1}{3}$B.$\frac{1}{3}$<a<$\frac{2}{3}$C.a>1D.$\frac{1}{3}$<a<$\frac{2}{3}$或a>1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=lnx-ax.其中a为非零常数.
(1)求a=1时,f(x)的单调区间;
(2)设b∈R,若f(x)≤b-a对x>0恒成立,求$\frac{b}{a}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.由正整数组成的一组数据x1,x2,x3,x4,其平均数和中位数都是2,且标准差等于$\frac{{\sqrt{2}}}{2}$,则这组数据为1,2,2,3. (从小到大排列)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知f(x)=|ax-1|,若实数a>0,不等式f(x)≤3的解集是{x|-1≤x≤2}.
(Ⅰ)求a的值;
(Ⅱ)若$\frac{f(x)+f(-x)}{3}$<|k|存在实数解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{x^2}{4}+\frac{y^2}{b^2}=1$(b>0),以椭圆C的短轴为直径的圆O经过椭圆C左右两个焦点,A,B是椭圆C的长轴端点.
(1)求圆O的方程和椭圆C的离心率e;
(2)设P,Q分别是椭圆C和圆O上的动点(P,Q位于y轴两侧),且直线PQ与x轴平行,直线AP,BP分别与y轴交于点M,N,试判断MQ与NQ所在的直线是否互相垂直,若是,请证明你的结论;若不是,也请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若对?m,n∈R,有g(m+n)=g(m)+g(n)-3,求$f(x)=\frac{{x\sqrt{1-{x^2}}}}{{{x^2}+1}}+g(x)$的最大值与最小值之和是(  )
A.4B.6C.8D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.甲乙两个口袋分别装有四张扑克牌,甲口袋内的四张牌分别为红桃A,方片A,黑桃Q与梅花K,乙口袋内的四张牌分别为黑桃A,方片Q,梅花Q与黑桃K,从两个口袋分别任取两张牌.
(Ⅰ)求恰好抽到两张A的概率.
(Ⅱ)记四张牌中含有黑桃的张数为x,求x的分布列与期望.

查看答案和解析>>

同步练习册答案