精英家教网 > 高中数学 > 题目详情

设集合A={x|kx2+4x+4=0,x∈R},若A中只有一个元素,则实数k的值为  

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=|x2-4x-5|.
(1)在区间[-2,6]上画出函数f(x)的图象;
(2)设集合A={x|f(x)≥5},B=(-∞,-2]∪[0,4]∪[6,+∞).试判断集合A和B之间的关系(要写出判断过程);
(3)当k>2时,求证:在区间[-1,5]上,y=kx+3k的图象位于函数f(x)图象的上方.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|y=
x-4
2-x
},B={k|f(x)=
x2+x+1
kx2+kx+1
的定义域为R}.
(Ⅰ)若f是A到B的函数,使得f:x→y=
2
x-1
,若a∈B,且a∉{y|y=f(x),x∈A},试求实数a的取值范围;
(Ⅱ)若命题p:m∈A,命题q:m∈B,且“p且q”为假,“p或q”为真,试求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=|x2-2x-8|.
(1)在区间[-3,5]上画出函数f(x)的图象;
(2)设集合A={x|f(x)≥5},B=(-∞,-3]∪[-1,3]∪[5,+∞).写出集合A和B之间的关系(相等或子集或真子集);
(3)当k>2时,求证:在区间[-2,4]上,函数f(x)图象位于函数y=kx+4k的图象的下方.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|y=
x-4
2-x
}
,B={k|f(x)=
x2+x+1
kx2+kx+1
的定义域为R}
(1)求集合A、B;
(2)若f是A到B的函数,使得f:x→y=
2
x-1
,若a∈B,且a∉{y|y=
2
x-1
,x∈A}
,试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=|x2-4x-5|.

(1)在区间[-2,6]上画出函数f(x)的图象.

(2)设集合A={x|f(x)≥5},B=(-∞,-2]∪[0,4]∪[6,+∞).试判断集合A和B之间的关系,并给出证明.

(3)当k>2时,求证:在区间[-1,5]上,y=kx+3k的图象位于函数f(x)图象的上方.

查看答案和解析>>

同步练习册答案