精英家教网 > 高中数学 > 题目详情
(2013•枣庄二模)已知数列{an}满足:2a1+2a2+…+2an-1+2an=2n+1-2,n∈N*
(1)求数列{an}的通项公式;
(2)设bn=
2anan+1
,数列{bn}的前n项和为Tn.若存在实数λ,使得λ≥Tn,试求出实数λ的最小值.
分析:(1)当n≥2时,由2a1+2a2+…+2an-1+2an=2n+1-2,2a1+2a2+…+2an-1=2n-2,相减即可得出an,当n=1时,单独考虑;
(2)利用(1)的结论即可得到bn,利用裂项求和即可得出Tn,进而得出数列{Tn}的单调性,即可得到λ的值.
解答:解:(1)当n≥2时,∵2a1+2a2+…+2an-1+2an=2n+1-2
2a1+2a2+…+2an-1=2n-2,
2an=(2n+1-2)-(2n-2),即2an=2n
当n=1时,2a1=22-2,解得a1=1,也符合上式.
∴数列{an}的通项公式为an=n;
(2)由(1)可知:bn=
2
anan+1
=
2
n(n+1)
=2(
1
n
-
1
n+1
)

∴Tn=2[(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)]
=2(1-
1
n+1
)

Tn+1-Tn=2(1-
1
n+2
)-2(1-
1
n+1
)
=
2
(n+1)(n+2)
>0

∴Tn+1>Tn.数列{Tn}是单调递增数列,
∴{T1}的最小值为T1=1.
由题意,λ≥数列{Tn}的最小值=1,
∴实数λ的最小值为1.
点评:本题综合考查了求数列的通项公式、裂项求和方法、数列的单调性等基础知识与基本技能,考查了推理能力和计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•枣庄二模)已知函数f(x)=x2-
ln|x|
x
,则函数y=f(x)的大致图象为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•枣庄二模)若双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的一个焦点到一条渐近线的距离等于焦距的
1
4
,则此双曲线的渐近线方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•枣庄二模)如图所示,墙上挂有边长为2的正方形木板,它的四个角的空白部分都是以正方形的顶点为圆心,半径为1的圆孤,某人向此板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都一样,则它击中阴影部分的概率是
1-
π
4
1-
π
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•枣庄二模)集合A={(x,y)|y=x,x∈R},B={(x,y)|x2+y2=1,x,y∈R},则集合A∩B中元素的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•枣庄二模)已知i是虚数单位,若纯虚数z满足(2-i)z=4+2ai,则实数a的值为(  )

查看答案和解析>>

同步练习册答案