精英家教网 > 高中数学 > 题目详情
若a2+b2=c2,求证:a,b,c不可能都是奇数.
证明:假设a,b,c都是奇数,则a2,b2,c2都是奇数,
得a2+b2为偶数,而c2为奇数,即a2+b2≠c2,这与a2+b2=c2 相矛盾,
所以假设不成立,故原命题成立.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,三边a、b、c所对的角分别为A、B、C,若a2+b2-c2+
2
ab=0
,则角C的大小为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,三边a、b、c所对的角分别为A、B、C,若a2+b2-c2+
2
ab=0,则角C的大小为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别为内角A,B,C的对边,若a2=b2+c2+bc,且sinB+sinC=1,则角B=
30°
30°

查看答案和解析>>

科目:高中数学 来源: 题型:

用反证法证明命题“若a2+b2+c2=0,则a=b=c=0”时,第一步应假设(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若a2=b2+c2-bc,则A=
3
3

查看答案和解析>>

同步练习册答案