精英家教网 > 高中数学 > 题目详情
已知数列{an}是等差数列,a2=3,a5=6,数列{bn}的前n项和是Tn,且Tn+bn=1.
(1)求数列{an}的通项公式与前n项的和Mn.(2)求数列{bn}的通项公式.
【答案】分析:(1)设{an}的公差为d,进而根据等差数列通项公式表示出a2和a5,求得a1和d,则数列的通项公式和求和公式可得.
(2)根据Tn-Tn-1=bn,整理得bn=bn-1.判断出{bn}是等比数列.进而求得b1,利用等比数列的通项公式求得答案.
解答:解:(1)设{an}的公差为d,则:a2=a1+d,a5=a1+4d.∴
∴a1=2,d=1
∴an=2+(n-1)=n+1.
Mn=na1+d=
(2)当n=1时,b1=T1
由T1+b1=1,得b1=
当n≥2时,∵Tn=1-bn,Tn-1=1-bn-1
∴Tn-Tn-1=(bn-1-bn),
即bn=(bn-1-bn).
∴bn=bn-1
∴{bn}是以为首项,为公比的等比数列.
∴bn=•(n-1=
点评:本题主要考查了等差数列的性质和等比数列的判定.考查了学生对数列基本知识点的掌握.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义一个“等积数列”:在一个数列中,如果每一项与它后一项的积都是同一常数,那么这个数列叫“等积数列”,这个常数叫做这个数列的公积.已知数列{an}是等积数列,且a1=2,公积为5,则这个数列的前n项和Sn的计算公式为:
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在一个数列中,如果?n∈N*,都有an•an+1•an+2=k(k为常数),那么这个数列叫做等积数列,k叫做这个数列的公积.已知数列{an}是等积数列,且a1=1,a2=3,公积为27,则a1+a2+a3+…+a18=
78
78

查看答案和解析>>

科目:高中数学 来源: 题型:

定义“等积数列”:在一个数列中,如果每一个项与它的后一项的积都为同一个常数,那末这个数列叫做等积数列,这个常数叫做该数列的公积.已知数列{an}是等积数列,且a1=2,公积为5,Tn为数列{an}前n项的积,则T2011=
51006
2
51006
2

查看答案和解析>>

科目:高中数学 来源: 题型:

我们对数列作如下定义,如果?n∈N*,都有anan+1an+2=k(k为常数),那么这个数列叫做等积数列,k叫做这个数列的公积.已知数列{an}是等积数列,且a1=1,a2=2,公积为6,则a1+a2+a3+…+a9=
18
18

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列的定义为:在一个数列中,从第二项起,如果每一项与它的前一项的差都为同一个常数,那么这个数列叫做等差数列,这个常数叫做该数列的公差.
(1)类比等差数列的定义给出“等和数列”的定义;
(2)已知数列{an}是等和数列,且a1=2,公和为5,求 a18的值,并猜出这个数列的通项公式(不要求证明).

查看答案和解析>>

同步练习册答案