精英家教网 > 高中数学 > 题目详情
已知等比数列{an}的前n项和为Sn,满足Sn=bn+r(b>0且b≠1,b,r均为常数)
(1)求r的值;      
(2)当b=2时,记(n∈N*),求数列{bn}的前n项的和Tn
【答案】分析:(1)利用an=,由,知a1=S1=b+r,an=Sn-Sn-1=(b-1)•bn-1,再由{an}为等比数列,能求出r.
(2)由an=(b-1)•bn-1,b=2,知an=2n-1,bn==,由此利用错位相减法能求出Tn
解答:解:(1)因为,当n=1时,a1=S1=b+r,(1分)
当n≥2时,an=Sn-Sn-1=bn+r-(bn-1+r)
=bn-bn-1
=(b-1)•bn-1,(3分)
又∵{an}为等比数列,
=b-1=b+r,
∴r=-1.(4分)
(2)证明:由(1)得等比数列{an}的首项为b-1,公比为b,
∴an=(b-1)•bn-1,(5分)
当b=2时,=2n-1
bn===,(6分)
设Tn=b1+b2+b3+…+bn
则Tn=
=,(7分)
两式相减,得=
=-=,(9分)
所以=.(10分)
点评:本题考查数列的通项公式和前n项和公式的求法和应用,解题时要认真审题,仔细解答,注意错位相减法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

5、已知等比数列{an}的前n项和为Sn,公比q≠1,若S5=3a4+1,S4=2a3+1,则q等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a2=9,a5=243.
(1)求{an}的通项公式;
(2)令bn=log3an,求数列{
1bnbn+1
}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}满足a1•a7=3a3a4,则数列{an}的公比q=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中a1=64,公比q≠1,且a2,a3,a4分别为某等差数列的第5项,第3项,第2项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2an,求数列{|bn|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a3+a6=36,a4+a7=18.若an=
12
,则n=
9
9

查看答案和解析>>

同步练习册答案