精英家教网 > 高中数学 > 题目详情
如图,在四棱锥P﹣ABCD中,底面ABCD为菱形,∠BAD=60°,Q为AD的中点,
PA=PD=AD=2
(1)点M在线段PC上,PM=tPC,试确定t的值,使PA平面MQB;
(2)在(1)的条件下,若平面PAD⊥平面ABCD,求二面角M﹣BQ﹣C的大小.
解:(1)当t=时,PA平面MQB
下面证明:若PA平面MQB,连AC交BQ于N
由AQBC可得,△ANQ∽△BNC,

PA平面MQB,PA平面PAC,平面PAC∩平面MQB=MN,
∴PAMN
  
即:PM=PC
∴t=
(2)由PA=PD=AD=2,Q为AD的中点,则PQ⊥AD.
又平面PAD⊥平面ABCD,
所以PQ⊥平面ABCD,
连BD,四边形ABCD为菱形,
∵AD=AB,∠BAD=60° △ABD为正三角形,Q为AD中点,
∴AD⊥BQ
以Q为坐标原点,分别以QA、QB、QP所在的直线为x,y,z轴,建立如图所示的坐标系,则各点坐标为A(1,0,0),B(0,,0),Q(0,0,0),P(0,0,
设平面MQB的法向量为
可得
而PAMN

取z=1,解得
取平面ABCD的法向量
设所求二面角为θ,则
故二面角M﹣BQ﹣C的大小为60°
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)证明AD⊥PB;
(2)求二面角P-BD-A的正切值大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,AB=4,PA=3,点A在PD上的射影为点G,点E在AB上,平面PEC⊥平面PDC.
(1)求证:AG∥平面PEC;
(2)求AE的长;
(3)求二面角E-PC-A的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
(Ⅰ)求证:平面PBD⊥平面PAC.
(Ⅱ)求四棱锥P-ABCD的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面是边长为a的菱形,∠ABC=60°PD⊥面ABCD,PC=a,E为PB中点
(1)求证;平面ACE⊥面ABCD;
(2)求三棱锥P-EDC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•武汉模拟)如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,BC∥AD,且∠BAD=90°,又PA⊥底面ABCD,BC=AB=PA=1,AD=2.
(1)求二面角P-CD-A的平面角正切值,
(2)求A到面PCD的距离.

查看答案和解析>>

同步练习册答案