精英家教网 > 高中数学 > 题目详情

若3<k<4,则二次曲线数学公式的焦点坐标是


  1. A.
    (0,±1)
  2. B.
    (±1,0)
  3. C.
    (±数学公式,0)
  4. D.
    与k的取值有关
B
分析:由k的取值范围,可得二次曲线表示焦点在x轴上的双曲线,因而不难得到a2和b2关于k的表示式,从而得到c的值,求出双曲线焦点坐标.
解答:∵3<k<4,∴3-k<0,而4-k>0,
故二次曲线即:,表示焦点在x轴上的双曲线
即a2=4-k,b2=k-3,所以c2=a2+b2=1,c=1
∴双曲线焦点坐标为:(±1,0)
故选B
点评:本题给出含有字母参数的二次曲线方程,要我们求该曲线的焦点坐标,着重考查了二次曲线的一般方程的形式和焦点坐标的求法,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列说法中
①设定点F1(0,-3),F2(0,3),动点P(x,y)满足条件|PF1|+|PF2|=a(a>0),则动点P的轨迹是椭圆或线段;
②命题“每个指数函数都是单调函数”是全称命题,而且是真命题.
③离心率为
1
2
,长轴长为8的椭圆标准方程为
x2
16
+
y2
12
=1

④若3<k<4,则二次曲线
x2
4-k
+
y2
3-k
=1
的焦点坐标是(±1,0).
其中正确的为
②④
②④
(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法中
①设定点F1(0,-3),F2(0,3),动点P(x,y)满足条件|PF1|+|PF2|=a(a>0),则动点P的轨迹是椭圆或线段;
②命题“每个指数函数都是单调函数”是全称命题,而且是真命题.
③离心率为
1
2
,长轴长为8的椭圆标准方程为
x2
16
+
y2
12
=1

④若3<k<4,则二次曲线
x2
4-k
+
y2
3-k
=1
的焦点坐标是(±1,0).
其中正确的为
②④
②④
(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

以下各个关于圆锥曲线的命题中
①设定点F1(0,-3),F2(0,3),动点P(x,y)满足条件|PF1|+|PF2|=a(a>0),则动点P的轨迹是椭圆或线段;
②过点(0,1)作直线,使它与抛物线y2=4x仅有一个公共点,这样的直线有3条;
③离心率为
1
2
,长轴长为8的椭圆标准方程为
x2
16
+
y2
12
=1

④若3<k<4,则二次曲线
x2
4-k
+
y2
3-k
=1
的焦点坐标是(±1,0).
其中真命题的序号为
②④
②④
(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

若3<k<4,则二次曲线
x2
4-k
+
y2
3-k
=1
的焦点坐标是(  )

查看答案和解析>>

科目:高中数学 来源:2012-2013学年吉林省实验中学高二(上)期中数学试卷(文科)(解析版) 题型:填空题

以下各个关于圆锥曲线的命题中
①设定点F1(0,-3),F2(0,3),动点P(x,y)满足条件|PF1|+|PF2|=a(a>0),则动点P的轨迹是椭圆或线段;
②过点(0,1)作直线,使它与抛物线y2=4x仅有一个公共点,这样的直线有3条;
③离心率为,长轴长为8的椭圆标准方程为
④若3<k<4,则二次曲线的焦点坐标是(±1,0).
其中真命题的序号为    (写出所有真命题的序号)

查看答案和解析>>

同步练习册答案