精英家教网 > 高中数学 > 题目详情
(2012•宣城模拟)已知函数y=sin6x+cos6x (x∈R),用公式a3+b3=(a+b)(a2-ab+b2)将其化简,并求其周期、最小值和单调递减区间.
分析:利用公式a3+b3=(a+b)(a2-ab+b2)将函数y=sin6x+cos6x (x∈R),化简为y=
5
8
+
3
8
cos4x,从而可求其周期、最小值和单调递减区间.
解答:解:∵y=sin6x+cos6x=(sin2x+cos2x)(sin4x-sin2xcos2x+cos4x)
=1•(sin2x+cos2x)2-3sin2xcos2x
=1-
3
4
sin22x
=
5
8
+
3
8
cos4x…(6分),
∴周期T=
4
 …(7分),
 最小值为:
5
8
-
3
8
=
1
4
…(9分)
由2kπ≤4x≤2kπ+π,(k∈Z)得:
2
≤x≤
2
+
π
4
,(k∈Z)
∴单调递减区间[
2
2
+
π
4
],(k∈Z)…(12分)     注:丢掉k∈Z扣1分.
点评:本题考查二倍角的余弦,三角函数的平方关系式及三角函数的周期性及其求法,突出考查余弦函数的单调性,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•宣城模拟)如图,⊙O的半径为1,点A,B,C是⊙O上的点,且∠AOB=30°,AC=2AB,则
OA
BC
=
3
2
3
-3
3
2
3
-3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•宣城模拟)设全集U,若A∪B=A∪D,则下列结论一定成立的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•宣城模拟)已知i是虚数单位,则 i+i2+i3+…+i2011=(  )(注:指数从1到2011共2011项连加)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•宣城模拟)若变量x,y满足约束条件
2≤x+y≤4
1≤x-y≤2
,则z=2x+4y的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•宣城模拟)在平面直角坐标系下,已知 C1
x=mt
y=1-t
(t为参数,m≠0的常数),C2
x=2cosθ
y=2sinθ
(θ为参数).则C1、C2位置关系为(  )

查看答案和解析>>

同步练习册答案