精英家教网 > 高中数学 > 题目详情

已知定义域为(0,+∞)的函数f(x)满足:(1)对任意x∈(0,+∞),恒有f(3x)=3f(x)成立;(2)当x∈(1,3]时,f(x)=3-x.给出如下结论:
①对任意m∈Z,有f(3m)=0;
②函数f(x)的值域为[0,+∞);
③存在n∈Z,使得f(3n+1)=9.
其中所有正确结论的序号是______.

解:①∵对任意x∈(0,+∞),恒有f(3x)=3f(x)成立,当x∈(1,3]时,f(x)=3-x.
∴f(3m)=f(3•3m-1)=3f(3m-1)=…=3m-1f(3)=0,正确;
②取x∈(3m,3m+1],
从而f(x)∈[0,+∞),正确;
③∵x∈(1,3]时,f(x)=3-x,对任意x∈(0,+∞),恒有f(3x)=3f(x)成立,n∈Z,
∴f(3n+1)=3nf(1+)=3n(3-(1+))=3n(2-)≠9,故③错误;
故答案为:①②.
分析:依据题中条件注意研究每个选项的正确性,连续利用题中第(1)个条件得到①正确;连续利用题中第①②个条件得到②正确,③错误.
点评:本题通过抽象函数,考查了函数的周期性,单调性,以及学生的综合分析能力,难度大,易错点在于②x∈(3m,3m+1],的转化,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义域为(0,+∞)的函数f(x)满足:
(1)对任意x∈(0,+∞),恒有f(2x)=2f(x)成立;
(2)当x∈(1,2]时f(x)=2-x给出结论如下:
①任意m∈Z,有f(2m)=0;
②函数f(x)的值域为[0,+∞);
③存在n∈Z,使得f(2n+1)=9;
④“函数f(x)在区间(a,b)上单调递减”的充要条件是“存在k∈Z,使得(a,b)⊆(2k,2k-1).
其中所有正确结论的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为(0,+∞)的单调函数f(x)满足:f(m)+f(n)=f(m•n)对任意m,n∈(0,+∞)均成立.
(Ⅰ)求f(1)的值;若f(a)=1,求f(
1a
)
的值;
(Ⅱ)若关于x的方程2f(x+1)=f(kx)有且仅有一个根,求实数k的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为(0,+∞)的函数f(x)满足:(1)对任意x∈(0,+∞),恒有f(2x)=2f(x)成立;(2)当x∈(1,2]时,f(x)=2-x.给出如下结论:
①对任意m∈Z,有f(2m)=0;
②存在n∈Z,使得f(2n+1)=9;
③函数f(x)的值域为[0,+∞);
④“函数f(x)在区间(a,b)上单调递减”的充要条件是“存在k∈Z,使得(a,b)⊆(2k,2k+1)”.
其中所有正确结论的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为(0,+∞)函数f(x)的解析式满足(x-1)f(x-1)=x2-2x+2.函数g(x)=
f(x),x>0
f(-x),x<0
,则函数g(x)在区间[-2,-
1
2
]上的值域是
[2,
5
2
]
[2,
5
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为(0,+∞)的单调函数f(x),若对任意x∈(0,+∞),都有f(f(x)+log
1
2
x)=3
,则方程f(x)=2+
x
的解的个数是
0
0

查看答案和解析>>

同步练习册答案