精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
b
x2+x
(x>1)
x+1  (x≤1)
在R上连续,则b=(  )
分析:根据函数f(x)在R上连续,根据函数连续的定义进行求解;
解答:解:当x≤1时,f(x)=x+1,f(1)=2,
当x>1时,f(x)=
b
x2+x
,可得x→1时,f(1)=
b
2

因为f(x)在R上连续,
b
2
=2,∴b=4,
故选A;
点评:此题主要考查函数的连续性定义,是一道基础题,比较简单;
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
b-2x2x+1
为定义在区间[-2a,3a-1]上的奇函数,则a+b=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(b<0)的值域为[1,3].

(1)求实数b、c的值;

(2)判断F(x)=lgf(x)在x∈[-1,1]上的单调性,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)= (b<0)的值域是[1,3],

(1)求bc的值;

(2)判断函数F(x)=lgf(x),当x∈[-1,1]时的单调性,并证明你的结论;

(3)若t∈R,求证  lgF(|t|-|t+|)≤lg.

查看答案和解析>>

科目:高中数学 来源:2014届江西白鹭洲中学高一下学期第二次月考数学试卷(解析版) 题型:解答题

已知函数f(x)= (b<0)的值域是[1,3],

(1)求bc的值;

(2)判断函数F(x)=lgf(x),当x∈[-1,1]时的单调性,并证明你的结论;

(3)若t∈R,求证:lgF(|t|-|t+|)≤lg.

 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(b<0)的值域为[1,3].

(1)求实数b、c的值;

(2)判断函数F(x)=lgf(x)在[-1,1]上的单调性;

(3)若t∈R,求证:lg≤F(|t-|-|t+|)≤lg.

查看答案和解析>>

同步练习册答案