精英家教网 > 高中数学 > 题目详情

求证:关于x的方程+bx+c=0有一个根为1的充要条件是a+b+c=0.

答案:
解析:

(1)先证必要性:若x=1是关于x的方程:的根,则,即abc0

(2)再证充分性:若abc=0,此时把x=1代入所给方程左边,得左边=a·b·1c=abc=0.所以x=1是所给方程的根.

(1)(2)原命题成立.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

11、求证:关于x的方程ax3+bx2+cx+d=0有一根为1的充要条件是a+b=-(c+d).

查看答案和解析>>

科目:高中数学 来源: 题型:

求证:关于x的方程ax2+bx+c=0有一个根为-1的充要条件是a-b+c=0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c.
(1)若对任意x1,x2∈R,且x1<x2,都有f(x1)≠f(x2),求证:关于x的方程f(x)=
1
2
[f(x1)+f(x2)]
有两个不相等的实数根且必有一个根属于(x1,x2);
(2)若关于x的方程f(x)=
1
2
[f(x1)+f(x2)]
在(x1,x2)的根为m,且x1,m-
1
2
x2
成等差数列,设函数f (x)的图象的对称轴方程为x=x0,求证:x0<m2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的方程x2+3x-m=0的两个实数根的平方和等于11.求证:关于x的方程(k-3)x2+kmx-m2+6m-4=0有实数根.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泸州二模)设a>0,函数f(x)=
1
x2+a

(1)求证:关于x的方程f(x)=
1
x-1
没有实数根;
(2)求函数g(x)=
1
3
ax3+ax+
1
f(x)
的单调区间;
(3)设数列{xn}满足x1=0,xn+1=f(xn)(n∈N*),当a=2且0<xk
1
2
(k=2,3,4,…)
,证明:对任意m∈N*都有|xm+k-xk|<
1
3•4k-1

查看答案和解析>>

同步练习册答案