精英家教网 > 高中数学 > 题目详情

若2sina+cosa=0,则数学公式=________.


分析:利用二倍角公式把原式展开化简整理求得结果为.然后利用同角三角函数的基本关系,利用已知条件求得cosα的值,代入原式即可求得答案.
解答:==
由2sina+cosa=0得tana=得cosa=±,故=
=
故答案为:±
点评:本题主要考查了二倍角公式的化简求值,同角三角函数的基本关系的应用以及三角函数中的恒等变换的应用.综合考查了三角函数基本公式的记忆和灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC的三个内角A、B、C所对的边分别为a、b、c,且cos(B+C)+2sinA=1.
(1)求sinA和cosA;
(2)若△ABC的面积为4,且c=2,求a

查看答案和解析>>

科目:高中数学 来源: 题型:阅读理解

阅读下面材料:
根据两角和与差的正弦公式,有
sin(α+β)=sinαcosβ+cosαsinβ------①
sin(α-β)=sinαcosβ-cosαsinβ------②
由①+②得sin(α+β)+sin(α-β)=2sinαcosβ------③
α+β=A,α-β=B 有α=
A+B
2
,β=
A-B
2

代入③得 sinA+cosB=2sin
A+B
2
cos
A-B
2

(1)类比上述推理方法,根据两角和与差的余弦公式,证明:cosA-cosB=-2sin
A+B
2
sin
A-B
2

(2)若△ABC的三个内角A,B,C满足cos2A+cox2C-cos2B=1,直接利用阅读材料及(1)中的结论试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:阅读理解

(2012•福建模拟)阅读下面材料:
根据两角和与差的正弦公式,有sin(α+β)=sinαcosβ+cosαsinβ------①
sin(α-β)=sinαcosβ-cosαsinβ------②
由①+②得sin(α+β)+sin(α-β)=2sinαcosβ------③
令α+β=A,α-β=B有α=
A+B
2
,β=
A-B
2

代入③得 sinA+sinB=2sin
A+B
2
cos
A-B
2

(Ⅰ)类比上述推证方法,根据两角和与差的余弦公式,证明:cosA-cosB=-2sin
A+B
2
sin
A-B
2

(Ⅱ)若△ABC的三个内角A,B,C满足cos2A-cos2B=2sin2C,试判断△ABC的形状.
(提示:如果需要,也可以直接利用阅读材料及(Ⅰ)中的结论)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•深圳二模)已知向量
m
=(sinx,-cosx),
n
=(cosθ,-sinθ),其中0<θ<π.函数f(x)=
m
n
在x=π处取最小值.
(Ⅰ)求θ的值;
(Ⅱ)设A,B,C为△ABC的三个内角,若sinB=2sinA,f(C)=
1
2
,求A.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C的对边分别为a,b,c,若sinC=2sinA,b=
3
a.
(1)求角B;
(2)若△ABC的面积为2
3
,求函数f(x)=2sin2(x+π)+cos(2x-B)-a的单调增区间.

查看答案和解析>>

同步练习册答案