精英家教网 > 高中数学 > 题目详情
已知x∈R+,求函数y=x2(1-x)的最大值.

思路分析:本题积结构中x2=x·x,所以y=x2(1-x)=x×x(1-x),为使“和”为定值,还需拼凑系数.

解:y=x2(1-x)=x·x(1-x)=x·x·(2-2x)×

.

当且仅当x=2-2x,即x=时取等号.

此时,ymax=.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2
3
x3-
1
2
x2-x+1
,x∈R
(1)求函数f(x)的极大值和极小值;
(2)已知x∈R,求函数f(sinx)的最大值和最小值.
(3)若函数g(x)=f(x)+a的图象与x轴有且只有一个交点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知-1≤x≤2,且x≠0,求lg|x|+lg|7-x|的最大值.
(2)已知x∈R,求函数y=3(4x+4-x)-10(2x+2-x)的最小值.
(3)已知2x≤256且log2x≥
1
2
,求函数f(x)=log2
x
2
•log
2
x
2
的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省泰州市姜堰市蒋垛中学高三(下)期初数学试卷(解析版) 题型:解答题

已知函数f(x)=,x∈R
(1)求函数f(x)的极大值和极小值;
(2)已知x∈R,求函数f(sinx)的最大值和最小值.
(3)若函数g(x)=f(x)+a的图象与x轴有且只有一个交点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省泰州市姜堰市高三(下)期初数学试卷(解析版) 题型:解答题

已知函数f(x)=,x∈R
(1)求函数f(x)的极大值和极小值;
(2)已知x∈R,求函数f(sinx)的最大值和最小值.
(3)若函数g(x)=f(x)+a的图象与x轴有且只有一个交点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
2
3
x3-
1
2
x2-x+1
,x∈R
(1)求函数f(x)的极大值和极小值;
(2)已知x∈R,求函数f(sinx)的最大值和最小值.
(3)若函数g(x)=f(x)+a的图象与x轴有且只有一个交点,求a的取值范围.

查看答案和解析>>

同步练习册答案