精英家教网 > 高中数学 > 题目详情
函数f(x)=cosx(sinx+cosx)(x∈R)的最小正周期是
π
π
分析:把函数解析式利用单项式乘以多项式的法则计算,然后分别利用二倍角的正弦及余弦函数公式化简,再利用特殊角的三角函数值及两角和与差的正弦函数公式化为一个角的正弦函数,找出ω的值,代入周期公式T=
|ω|
即可求出函数的最小正周期.
解答:解:f(x)=cosx(sinx+cosx)
=cosxsinx+cos2x
=
1
2
sin2x+
1
2
(cos2x+1)
=
2
2
sin(2x+
π
4
)+
1
2

∵ω=2,∴T=
2
=π.
故答案为:π
点评:此题考查了三角函数的周期性及其求法,涉及的知识有:二倍角的正弦、余弦函数公式,两角和与差的正弦函数公式,以及特殊角的三角函数值,其中利用三角函数的恒等变形把函数解析式化为一个角的正弦函数是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x)=
cos(0<x<π)
g(x)(-π<x<0)
是奇函数,则函数g(x)的解析式是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cos(2x+?)满足f(x)≤f(1)对x∈R恒成立,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cos( 2x+
π
3
)+sin2x.
(Ⅰ)求函数f(x)的最小正周期和值域;
(Ⅱ)在△ABC中,角A、B、C的对边分别为a、b、c,满足2
AC
CB
=
2
ab,c=2
2
,f(A)=
1
2
-
3
4
,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=cosπx与函数g(x)=|log2|x-1||的图象所有交点的横坐标之和为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=cos(2x+θ)+
3
sin(2x+θ)是偶函数,则θ=
 

查看答案和解析>>

同步练习册答案