精英家教网 > 高中数学 > 题目详情

若函数f(x)=-4sin2x+4cosx+1-a,当数学公式时f(x)=0恒有解,则实数a的取值范围是________.

[-4,5]
分析:由f(x)=-4sin2x+4cosx+1-a=-4(1-cos2x)+4cosx+1-a=,由f(x)=0恒有解可得恒有解,结合二次函数的性质可求当的范围即a的范围
解答:∵f(x)=-4sin2x+4cosx+1-a
=-4(1-cos2x)+4cosx+1-a
=4cos2x+4cosx-3-a
=
又∵f(x)=0恒有解
∴0=恒有解
可得

∴-4≤a≤5
故答案为:[-4,5]
点评:本题主要考查了三角函数的同角平方关系的应用,由角的范围求解三角函数的范围,及二次函数在闭区间上的值域的 求解,属于函数知识的综合应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x)=4×9-|x-2|-2(P-2)×3-|x-2|-2P2-P+1在区间[2,+∞)内至少存在一个实数c使f(c)>0,则实数P的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=|4-x2|的定义域为[a,b],值域为[0,2],定义区间[a,b]的长度为b-a,则区间[a,b]长度的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=4+ax(a>0且a≠1)在[1,2]上的最大值比最小值大
a2
,求a的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数f(x)=4×9-|x-2|-2(P-2)×3-|x-2|-2P2-P+1在区间[2,+∞)内至少存在一个实数c使f(c)>0,则实数P的取值范围是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0且a≠1,f(loga x)=(x-).

(1)试证明函数y=f(x)的单调性.

(2)是否存在实数m满足:当y=f(x)的定义域为(-1,1)时,有f(1-m)+f(1-m2)<0?若存在,求出其取值范围;若不存在,请说明理由.

(3)若函数f(x)-4恰好在(-∞,2)上取负值,求a的值.

查看答案和解析>>