精英家教网 > 高中数学 > 题目详情
已知向量
OA
=(λsinα,λcosα),
OB
=(cosβ,sinβ),且α+β=
6
,其中O为原点.
(Ⅰ)若λ<0,求向量
OA
OB
的夹角;
(Ⅱ)若λ∈[-2,2],求|
AB
|的取值范围.
分析:(Ⅰ)由题意可得|
OA
|
|
OB
|
OA
OB
,代入夹角公式计算可得;
(Ⅱ)|
AB
|=|
OB
-
OA
|,代入已知计算可得关于λ的函数式,由二次函数的知识可得相应的最值,可得范围.
解答:解:(Ⅰ)由题意可得|
OA
|
=
(λsinα)2+(λcosα)2
=-λ,
|
OB
|
=
cos2β+sin2β
=1,
OA
OB
=λsinαcosβ+λcosαsinβ
=λsin(α+β)=λsin
6
=
1
2
λ
,设向量
OA
OB
的夹角为θ,
则cosθ=
1
2
λ
-λ×1
=-
1
2
,又因为θ∈[0,π],
所以向量
OA
OB
的夹角θ为
3

(Ⅱ)|
AB
|=|
OB
-
OA
|=
(cosβ-λsinα)2+(sinβ-λcosα)2

=
1+λ2-2λ(sinαcosβ+cosαsinβ)
=
1+λ2-2λsin(α+β)

=
1+λ2
=
(λ-
1
2
)2+
3
4
,由于λ∈[-2,2],
由二次函数的知识可知:当λ=
1
2
时,上式有最小值
3
2

当λ=-2时,上式有最大值
7

故|
AB
|的取值范围是[
3
2
7
]
点评:本题考查数量积表示两个向量的夹角,涉及三角函数的运算,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知三点A(cosα,sinα),B(cosβ,sinβ),C(cosγ,sinγ),若向量
OA
+K
OB
+(2-K)
OC
=
0
(k为常数且0<k<2,O为坐标原点,S△BOC表示△BOC的面积)
(1)求cos(β-γ)的最值及相应的k的值;
(2)求cos(β-γ)取得最大值时,S△BOC:S△AOC:S△AOB

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
OA
=
a
=(cosα,sinα)
OC
=
c
=(0,2)
OB
=
b
=(2cosβ,2sinβ)
,其中O为坐标原点,且0<α<
π
2
<β<π
(1)若
a
⊥(
b
-
a
)
,求β-α的值;
(2)若
OB
OC
=2,
OA
OC
=
3
,求△OAB的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
OA
=a=(
2
cosα,
2
sinα)
OB
=b=(2cosβ,2sinβ),其中O为坐标原点,且
π
6
≤α<
π
2
<β≤
6

(1)若
a
⊥(
b
-
a
),求β-α的值;
(2)当
a
•(
b
-
a
)取最小值时,求△OAB的面积S.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知向量
OA
=a=(
2
cosα,
2
sinα)
OB
=b=(2cosβ,2sinβ),其中O为坐标原点,且
π
6
≤α<
π
2
<β≤
6

(1)若
a
⊥(
b
-
a
),求β-α的值;
(2)当
a
•(
b
-
a
)取最小值时,求△OAB的面积S.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知向量
OA
=
a
=(cosα,sinα)
OC
=
c
=(0,2)
OB
=
b
=(2cosβ,2sinβ)
,其中O为坐标原点,且0<α<
π
2
<β<π
(1)若
a
⊥(
b
-
a
)
,求β-α的值;
(2)若
OB
OC
=2,
OA
OC
=
3
,求△OAB的面积S.

查看答案和解析>>

同步练习册答案