精英家教网 > 高中数学 > 题目详情
已知f(x)的定义域为x∈R且x≠1,已知f(x+1)为奇函数,当x<1时,f(x)=2x2-x+1,那么,当x>1时,f(x)的递减区间是(  )
A.[
5
4
,+∞)
B.[1,
5
4
]
C.[
7
4
,+∞)
D.(1,
7
4
]
由题意知,f(x+1)为奇函数,则f(-x+1)=-f(x+1),
令t=-x+1,则x=1-t,故f(t)=-f(2-t),即f(x)=-f(2-x),
设x>1,则2-x<1,
∵当x<1时,f(x)=2x2-x+1,
∴f(2-x)=2(2-x)2-(2-x)+1=2x2-7x+7,
∴f(x)=-f(2-x)=-2x2+7x-7,
∴函数的对称轴x=
7
4

故所求的减区间是 [
7
4
,+∞ )

故选C.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)的定义域为[-1,2),则f(|x|)的定义域为(  )
A、[-1,2)B、[-1,1]C、(-2,2)D、[-2,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)的定义域是[0,1],且f(x+m)+f(x-m)的定义域是∅,则正数m的取值范围是
m>
1
2
m>
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)的定义域为{x∈R|x≠0},且f(x)是奇函数,当x>0时f(x)=-x2+bx+c,若f(1)=f(3),f(2)=2.
(1)求b,c的值;及f(x)在x>0时的表达式;
(2)求f(x)在x<0时的表达式;
(3)若关于x的方程f(x)=ax(a∈R)有解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)的定义域为R+,且f(x+y)=f(x)+f(y)对一切正实数x,y都成立,若f(8)=4,则f(2)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)的定义域为[0,1],求函数y=f(x+a)+f(x-a)(0<a<
12
)的定义域.

查看答案和解析>>

同步练习册答案