精英家教网 > 高中数学 > 题目详情
设a2+b2=1,x2+y2=4,则ax+by的最大值为(    )。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ax3+bx2+cx+d(a,b,c,d∈R,a>0)其中,f(0)=3,f′(x)是f(x)的导函数.
(Ⅰ)若f′(-1)=f′(3)=-36,f′(5)=0,求函数f(x)的解析式;
(Ⅱ)若c=-6,函数f(x)的两个极值点为x1,x2满足-1<x1<1<x2<2.设λ=a2+b2-6a+2b+10,试求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

现有下列命题:
①设a,b为正实数,若a2-b2=1,则a-b<1;
②已知a>2b>0,则a2+
8
b(a-2b)
的最小值为16;
③数列{n(n+4)(
2
3
)n}中的最大项是第4项

④设函数f(x)=
lg|x-1|,x≠1
0,x=1
,则关于x的方程f2(x)+2f(x)=0有4个解.
⑤若sinx+siny=
1
3
,则siny-cos2x的最大值是
4
3

其中的真命题有
①②③
①②③
.(写出所有真命题的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

现有下列命题:
①设a,b为正实数,若a2-b2=1,则a-b<1;
②△ABC若acosA=bcosB,则△ABC是等腰三角形;
③数列{n(n+4)(
2
3
n中的最大项是第4项;
④设函数f(x)=
lg|x-1|,x≠1
0,x=1
则关于x的方程f2(x)+2f(x)=0有4个解;
⑤若sinx+siny=
1
3
,则siny-cos2x的最大值是
4
3

其中的真命题有
①③
①③
.(写出所有真命题的编号).

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b,x,y∈R+,且a2+b2=1,x2+y2=1,试证:ax+by≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:

设实数a,b,x,y满足a2+b2=1,x2+y2=3,则ax+by的取值范围为
[-
3
3
]
[-
3
3
]

查看答案和解析>>

同步练习册答案