精英家教网 > 高中数学 > 题目详情
数列{an}的前几项为1,3,5,7,9,11,13,在数列{bn}中,b1=a1,b2=a2,b3=a4,b4=a8,…,则b20=(    )。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

数列{an}中,a1=-60,an+1-an=3,(1)求数列{an}的通项公式an和前n项和Sn(2)问数列{an}的前几项和最小?为什么?(3)求|a1|+|a2|+…+|a30|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设关于x的不等式x2-x<2nx(n∈N*)的解集中整数的个数为an,数列{an}的前几项和为Sn,则
S20112011
的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的前几项Sn=n2,数列{bn}为等比数列,且b2=3,b5=81.
(1)求a2、a3
(2)求数列{an}和{bn}的通项公式
(3)设cn=an•bn,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

0<θ<
π
2
,已知a1=2cosθ,an+1=
2+an
(n∈N*),通过计算数列{an}的前几项,猜想其通项公式为an=
2cos
θ
2n-1
2cos
θ
2n-1
(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前几项和Sn=n2+n+1,则数列{an}是(  )

查看答案和解析>>

同步练习册答案