精英家教网 > 高中数学 > 题目详情

已知圆o: 与椭圆有一个公共点A(0,1),F为椭圆的左焦点,直线AF被圆所截得的弦长为1.

(1)求椭圆方程。

(2)圆o与x轴的两个交点为C、D,B是椭圆上异于点A的一个动点,在线段CD上是否存在点T,使,若存在,请说明理由。

答案

⑵解法一:假设存在这样的点,使得,则点必定在线段的中垂线上……8分

设点

①直线斜率存在时,设直线

的中点……………………7分

可知

…………………9分

 且

⑵解法二:

设点B,由

,整理得     ……………7分

又∵,∴

时,

时,

又∵,∴        ……………10分

又圆O:

综上可知在线段CD上存在点T,使得       ……………12分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知圆o:x2+y2=b2与椭圆
x2
a2
+
y2
b2
=1(a>b>0)
有一个公共点A(0,1),F为椭圆的左焦点,直线AF被圆所截得的弦长为1.
(1)求椭圆方程.
(2)圆o与x轴的两个交点为C、D,B( x0,y0)是椭圆上异于点A的一个动点,在线段CD上是否存在点T(t,0),使|BT|=|AT|,若存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

.已知圆O:x2+y2=b2与直线l:y=
3
(x-2)
相切.
(1)求以圆O与y轴的交点为顶点,直线在x轴上的截距为半长轴长的椭圆C方程;
(2)已知点A(1,
3
2
)
,若直线与椭圆C有两个不同的交点E,F,且直线AE的斜率与直线AF的斜率互为相反数;问直线的斜率是否为定值?若是求出这个定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2010年浙江省高二上学期期中考试理科数学卷 题型:解答题

(本题满分15分)

在平面直角坐标系xOy中,已知对于任意实数,直线恒过定点F. 设椭圆C的中心在原点,一个焦点为F,且椭圆C上的点到F的最大距离为.

(1)求椭圆C的方程;

(2)设(mn)是椭圆C上的任意一点,圆O与椭圆C有4个相异公共点,试分别判断圆O与直线l1mx+ny=1和l2mx+ny=4的位置关系.

 

查看答案和解析>>

科目:高中数学 来源:江苏省苏泰州南通2010届高三第三次模拟考试 题型:解答题

 

在平面直角坐标系xOy中,已知对于任意实数,直线恒过定点F. 设椭圆C的中心在原点,一个焦点为F,且椭圆C上的点到F的最大距离为.

(1)求椭圆C的方程;

(2)设(mn)是椭圆C上的任意一点,圆O与椭圆C有4个相异公共点,试分别判断圆O与直线l1mx+ny=1和l2mx+ny=4的位置关系.

 

 

 

 

 

 

查看答案和解析>>

同步练习册答案