精英家教网 > 高中数学 > 题目详情

如图,点分别是椭圆C:的左、右焦点,过点轴的垂线,交椭圆的上半部分于点,过点的垂线交直线于点.

(1)如果点的坐标为(4,4),求椭圆的方程;

(2)试判断直线与椭圆的公共点个数,并证明你的结论.

 

【答案】

(1);(2)1个.

【解析】

试题分析:(1)要求椭圆方程,由于,需要通过已知条件表示出点的坐标,由于轴,则,代入椭圆方程求得点的纵坐标,从而求得直线的斜率,根据求的直线的斜率,有直线方程的点斜式求出直线的方程,直线的方程与联立求得点的坐标,从而求得,由于椭圆中可求出,即可求得椭圆的方程;(2)要判断直线与椭圆的公共点个数,需要求出直线的方程,与椭圆方程联立,消去得到关于得一元二次方程,通过判断这个方程的的根的情况,即可得出所求的交点的个数.

试题解析:解方程组点的坐标为

 ,直线的方程为

代入上式解得.                4分

(1)因为点的坐标为(4,4),所以,解得

椭圆的方程为.                            7分

(2),则 点的坐标为

的方程为,即,         9分

的方程代入椭圆的方程得

     ①

方程①可化为

解得

所以直线与椭圆只有一个公共点                     13分

考点:椭圆的性质,直线与椭圆的位置关系.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网设F1,F2分别是椭圆C:
x2
6m2
+
y2
2m2
=1
(m>0)的左,右焦点.
(1)当P∈C,且
PF1
PF
2
=0
,|PF1|•|PF2|=8时,求椭圆C的左,右焦点F1、F2
(2)F1、F2是(1)中的椭圆的左,右焦点,已知⊙F2的半径是1,过动点Q的作⊙F2切线QM,使得|QF1|=
2
|QM|
(M是切点),如图.求动点Q的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知中心在原点O、焦点在x轴上的椭圆C的离心率为
3
2
,点A、B分别是椭圆C的长轴、短轴的端点,点O到直线AB的距离为
6
5
5

(Ⅰ)求椭圆C的方程;
(Ⅱ)已知点E(3,0),设点P、Q是椭圆C上的两个动点,满足EP⊥EQ,求
EP
QP
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•揭阳一模)如图,设点F1(-c,0)、F2(c,0)分别是椭圆C:
x2
a2
+y2=1(a>1)
的左、右焦点,P为椭圆C上任意一点,且
PF1
PF2
最小值为0.
(1)求椭圆C的方程;
(2)设直线l1:y=kx+m,l2:y=kx+n,若l1、l2均与椭圆C相切,证明:m+n=0;
(3)在(2)的条件下,试探究在x轴上是否存在定点B,点B到l1,l2的距离之积恒为1?若存在,请求出点B坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知F1,F2分别是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点,且椭圆C的离心率e=
1
2
,F1也是抛物线C1:y2=-4x的焦点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点F2的直线l交椭圆C于D,E两点,且2
DF2
=
F2E
,点E关于x轴的对称点为G,求直线GD的方程.

查看答案和解析>>

同步练习册答案