精英家教网 > 高中数学 > 题目详情

已知椭圆C:数学公式(a>b≥0),其离心率为数学公式,两准线之间的距离为数学公式
(1)求a,b之值;
(2)设点A坐标为(6,0),B为椭圆C上的动点,以A为直角顶点,作等腰直角△ABP(字母A,B,P按顺时针方向排列),求P点的轨迹方程.

解:(1)设c为椭圆的焦半径,则,于是有a=5,c=4,∴b=3.
(2)解法一:设B点坐标为(s,t),P点坐标为(x,y).
于是有
因为,所以有(s-6,t)(x-6,y)=(s-6)(x-6)+ty=0. ①
又因为△ABP为等腰直角三角形,所以有|AB|=|AP|,即. ②
由①推出,代入②得t2=(x-6)2
从而有 y2=(s-6)2,即s=6+y(不合题意,舍去)或s=6-y.
代入椭圆方程,即得动点P的轨迹方程
解法二:设B(x1,y1),P(x,y),|AB|=r,则以A为圆心,r为半径的圆的参数方程为
设AB与x轴正方向夹角为θ,B点的参数表示为
P点的参数表示为,即
从上面两式,得到
又由于B点在椭圆上,可得
此即为P点的轨迹方程.
分析:(1)根据椭圆C:(a>b≥0),其离心率为,两准线之间的距离为,我们可以得到几何量之间的关系,由此可以求a,b之值;
(2)解法一:利用等腰直角△ABP条件,寻找B与P坐标之间的关系,利用B为椭圆C上的动点,可求动点P的轨迹方程;
解法二:利用圆的参数方程,寻找B与P坐标之间的关系,利用B为椭圆C上的动点,可求动点P的轨迹方程.
点评:椭圆的性质的灵活运用,是我们思路的关键,利用代入法求解两动点的轨迹问题,是我们解决这类问题的常用方法.
练习册系列答案
相关习题

科目:高中数学 来源:2010-2011学年福建省龙岩市高三(上)期末质量检查一级达标数学试卷(文科)(解析版) 题型:解答题

已知椭圆C: (a>b>0)的左、右焦点分别为F1(-1,0)、F2(1,0),离心率为
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知一直线l过椭圆C的右焦点F2,交椭圆于点A、B.
(ⅰ)若满足(O为坐标原点),求△AOB的面积;
(ⅱ)当直线l与两坐标轴都不垂直时,在x轴上是否总存在一点P,使得直线PA、PB的倾斜角互为补角?若存在,求出P坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2013年全国普通高等学校招生统一考试理科数学(四川卷解析版) 题型:解答题

(13分)已知椭圆C:(a>b>0)的两个焦点分别为F1(﹣1,0),F2(1,0),且椭圆C经过点

(I)求椭圆C的离心率:

(II)设过点A(0,2)的直线l与椭圆C交于M,N两点,点Q是线段MN上的点,且,求点Q的轨迹方程.

 

查看答案和解析>>

科目:高中数学 来源:2014届甘肃武威六中高二12月学段检测文科数学试题(解析版) 题型:解答题

(12分)已知椭圆C:(a>b>0)的一个顶点为A(2,0),离心率为,直线y=k(x-1)与椭圆C交于不同的两点M、N.

 ①求椭圆C的方程.

 ②当⊿AMN的面积为时,求k的值.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江西省高三第七次月考理科数学 题型:解答题

已知椭圆C:+=1(a>b>0),直线y=x+与以原点为圆心,以椭圆C的短半轴长为半径的圆相切,F1,F2为其左、右焦点,P为椭圆C上任一点,△F1PF2的重心为G,内心为I,且IG∥F1F2。⑴求椭圆C的方程。⑵若直线L:y=kx+m(k≠0)与椭圆C交于不同两点A,B且线段AB的垂直平分线过定点C(,0)求实数k的取值范围。

 

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省高三上学期第三次月考数学文卷 题型:选择题

已知椭圆C:(a>b>0)的离心率为,过右焦点F且斜率为kk>0)的直线与椭圆C相交于A、B两点,若。则 (    ) 

(A)1     (B)2      (C)      (D)

 

查看答案和解析>>

同步练习册答案