科目:高中数学 来源:2014届山东省济宁市高二5月质量检测理科数学试卷(解析版) 题型:解答题
已知二次函数
的导函数的图像与直线
平行,且
在
处取得极小值
.设
.
(1)若曲线
上的点
到点
的距离的最小值为
,求
的值;
(2)
如何取值时,函数
存在零点,并求出零点.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年江苏省高三第四次(12月)阶段性测试数学试卷(解析版) 题型:解答题
设函数
.
(1)若函数
图像上的点到直线
距离的最小值为
,求
的值;
(2)关于
的不等式
的解集中的整数恰有3个,求实数
的取值范围;
(3)对于函数
定义域上的任意实数
,若存在常数
,使得
和
都成立,则称直线
为函数
的
“分界线”.设
,试探究
是否存在“分界线”?若存在,求出“分界线”的方程,若不存在,请说明理由.![]()
查看答案和解析>>
科目:高中数学 来源:2012年全国普通高等学校招生统一考试理科数学(福建卷解析版) 题型:选择题
函数f(x)在[a,b]上有定义,若对任意x1,x2∈[a,b],有
则称f(x)在[a,b]上具有性质P.设f(x)在[1,3]上具有性质P,现给出如下命题:
①f(x)在[1,3]上的图像是连续不断的;
②f(x)在[1,
]上具有性质P;
③若f(x)在x=2处取得最大值1,则f(x)=1,x∈[1,3];
④对任意x1,x2,x3,x4∈[1,3],有![]()
其中真命题的序号是
A、①② B.①③ C.②④ D.③④
查看答案和解析>>
科目:高中数学 来源:2014届广东省梅州市高一第二学期3月月考数学试卷 题型:解答题
(本小题满分14分)已知向量
,
,其中
设函数
.
(1)若
的最小正周期为
,求函数
的单调递减区间;
(2)若函数
图像的一条对称轴为
,求
的值。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com