精英家教网 > 高中数学 > 题目详情

设α,β是一个钝角三角形的两个锐角,下列四个不等式中不正确的是________(1)tanαtanβ<1;(2)sinα+sinβ<;(3)cosα+cosβ>1;(4)tan(α+β)<tan

答案:(4)
提示:

本题考查三角形中的三角变形的基础知识,解决这类问题在进行三角变形时,注意三角形的隐含条件,就可以处理.题中(4)tan(α+β)tan大小关系的判断,观察左、右两式中角的倍、半关系,因此选技倍角关系转化为同一角tan(α+β),因为α,β是钝角三角形的两锐角说明(0),故tan(01),则tan(α+β)tan


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ax+bx-cx,其中c>a>0,c>b>0.若a,b,c是△ABC的三条边长,则下列结论正确的是
①②③
①②③
.(写出所有正确结论的序号)
①?x∈(-∞,1),f(x)>0;
②?x∈R,使ax,bx,cx不能构成一个三角形的三条边长;
③若△ABC为钝角三角形,则?x∈(1,2),使f(x)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•湖南)设函数f(x)=ax+bx-cx,其中c>a>0,c>b>0.
(1)记集合M={(a,b,c)|a,b,c不能构成一个三角形的三条边长,且a=b},则(a,b,c)∈M所对应的f(x)的零点的取值集合为
{x|0<x≤1}
{x|0<x≤1}

(2)若a,b,c是△ABC的三条边长,则下列结论正确的是
①②③
①②③
.(写出所有正确结论的序号)
①?x∈(-∞,1),f(x)>0;
②?x∈R,使ax,bx,cx不能构成一个三角形的三条边长;
③若△ABC为钝角三角形,则?x∈(1,2),使f(x)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax+bx-cx,其中c>a>0,c>b>0.若a,b,c是△ABC的三条边长,则下列结论中正确的是(  )
①对一切x∈(-∞,1)都有f(x)>0;
②存在x∈R+,使xax,bx,cx不能构成一个三角形的三条边长;
③若△ABC为钝角三角形,则存在x∈(1,2),使f(x)=0.
A、①②B、①③C、②③D、①②③

查看答案和解析>>

科目:高中数学 来源:湖南 题型:填空题

设函数f(x)=ax+bx-cx,其中c>a>0,c>b>0.
(1)记集合M={(a,b,c)|a,b,c不能构成一个三角形的三条边长,且a=b},则(a,b,c)∈M所对应的f(x)的零点的取值集合为______.
(2)若a,b,c是△ABC的三条边长,则下列结论正确的是______.(写出所有正确结论的序号)
①?x∈(-∞,1),f(x)>0;
②?x∈R,使ax,bx,cx不能构成一个三角形的三条边长;
③若△ABC为钝角三角形,则?x∈(1,2),使f(x)=0.

查看答案和解析>>

科目:高中数学 来源:2013年湖南省高考数学试卷(理科)(解析版) 题型:填空题

设函数f(x)=ax+bx-cx,其中c>a>0,c>b>0.
(1)记集合M={(a,b,c)|a,b,c不能构成一个三角形的三条边长,且a=b},则(a,b,c)∈M所对应的f(x)的零点的取值集合为   
(2)若a,b,c是△ABC的三条边长,则下列结论正确的是    .(写出所有正确结论的序号)
①?x∈(-∞,1),f(x)>0;
②?x∈R,使ax,bx,cx不能构成一个三角形的三条边长;
③若△ABC为钝角三角形,则?x∈(1,2),使f(x)=0.

查看答案和解析>>

同步练习册答案