精英家教网 > 高中数学 > 题目详情

若圆C经过点,且圆心C在直线上,求圆C的方程.

(法一)因为,AB中点为(0,-4),所以AB中垂线方程为y+4=-2x,即2x+y+4=0,解方程组
所以圆心C为(-1,-2).根据两点间的距离公式,得半径r=,
因此,所求的圆C的方程为.
(法二)所求圆C的方程为,根据已知条件得

所以所求圆C的方程为.……  13分

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若圆C经过点A(-1,5),B(5,5,),C(6,-2)三点.
(1)求圆C的圆心和半径;
(2)求过点(0,6)且与圆C相切的直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C经过点A(1,2)、B(3,0),并且直线m:2x-3y=0平分圆C.
(1)求圆C的方程;
(2)过点D(0,3),且斜率为k的直线l与圆C有两个不同的交点E、F,若|EF|≥2
3
,求k的取值范围;
(3)若圆C关于点(
3
2
,1)
对称的曲线为圆Q,设M(x1,y1)、P(x2,y2)(x1≠±x2)是圆Q上的两个动点,点M关于原点的对称点为M1,点M关于x轴的对称点为M2,如果直线PM1、PM2与y轴分别交于(0,m)和(0,n),问m•n是否为定值?若是求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

若圆C经过坐标原点和点(6,0),且与直线y=1相切,从圆C外一点P(a,b)向该圆引切线PT,T为切点,
(Ⅰ)求圆C的方程;
(Ⅱ)已知点Q(2,-2),且|PT|=|PQ|,试判断点P是否总在某一定直线l上,若是,求出l的方程;若不是,请说明理由;
(Ⅲ)若(Ⅱ)中直线l与x轴的交点为F,点M,N是直线x=6上两动点,且以M,N为直径的圆E过点F,圆E是否过定点?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C经过点A(-1,0)和B(3,0),且圆心在直线x-y=0上.
(1)求圆C的方程;
(2)若点P(x,y)为圆C上任意一点,求点P到直线x+2y+4=0的距离的最大值和最小值.

查看答案和解析>>

同步练习册答案