精英家教网 > 高中数学 > 题目详情
已知矩阵M=
20
11
,求矩阵M的特征值及其相应的特征向量.
分析:先根据特征值的定义列出特征多项式,令f(λ)=0解方程可得特征值,再由特征值列出方程组即可解得相应的特征向量.
解答:解:矩阵M的特征多项式为f(λ)=
.
λ-2     0
  -1    λ-1
.
=λ2-3λ+2
,(2分)
令f(λ)=0,解得λ1=1,λ2=2,(4分)
将λ1=1代入二元一次方程组
(λ-2)•x+0•y=0
-x+(λ-1)y=0
解得x=0,(6分)
所以矩阵M属于特征值1的一个特征向量为
0
1
;(8分)
同理,矩阵M属于特征值2的一个特征向量为
1
1
(10分)
点评:本题主要考查来了矩阵特征值与特征向量的计算等基础知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•盐城二模)选修4-2  矩阵与变换
已知矩阵M=
12
2x
的一个特征值为3,求另一个特征值及其对应的一个特征向量.

查看答案和解析>>

科目:高中数学 来源: 题型:

三题中任选两题作答
(1)(2011年江苏高考)已知矩阵A=
11
21
,向量β=
1
2
,求向量α,使得A2α=β
(2)(2011年山西六校模考)以直角坐标系的原点O为极点,x轴的正半轴为极轴,已知点P的直角坐标为(1,-5),点M的极坐标为(4,
π
2
)
,若直线l过点P,且倾斜角为
π
3
,圆C以M为圆心、4为半径.
①求直线l的参数方程和圆C的极坐标方程;  ②试判定直线l和圆C的位置关系.
(3)若正数a,b,c满足a+b+c=1,求
1
3a+2
+
1
3b+2
+
1
3c+2
的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知矩阵M=
20
11
,求矩阵M的特征值及其相应的特征向量.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省宁德市福鼎一中高三(下)第二次质检数学复习卷1(理科)(解析版) 题型:解答题

三题中任选两题作答
(1)(2011年江苏高考)已知矩阵,向量,求向量α,使得A2α=β
(2)(2011年山西六校模考)以直角坐标系的原点O为极点,x轴的正半轴为极轴,已知点P的直角坐标为(1,-5),点M的极坐标为,若直线l过点P,且倾斜角为,圆C以M为圆心、4为半径.
①求直线l的参数方程和圆C的极坐标方程;  ②试判定直线l和圆C的位置关系.
(3)若正数a,b,c满足a+b+c=1,求的最小值.

查看答案和解析>>

同步练习册答案