精英家教网 > 高中数学 > 题目详情
若函数f(x)=在区间(-2,+∞)上单调递增,求a的取值范围.

解:f(x)=.图象由反比例函数y=的图象通过平移而得,故当1-2a<0时,才会有(-2,+∞)上递增,a>.

∴a∈(,+∞).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•香洲区模拟)已知f(x)=3x2-x+m,(x∈R),g(x)=lnx
(1)若函数 f(x)与 g(x)的图象在 x=x0处的切线平行,求x0的值;
(2)求当曲线y=f(x)与y=g(x)有公共切线时,实数m的取值范围;并求此时函数F(x)=f(x)-g(x)在区间
13
 , 1 ]
上的最值(用m表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•武进区模拟)设函数f(x)=ax2+bx+1,a>0,b∈R 的最小值为-a,f(x)=0两个实根为x1、x2
(1)求x1-x2的值;
(2)若关于x的不等式f(x)<0解集为A,函数f(x)+2x在A上不存在最小值,求a的取值范围;
(3)若-2<x1<0,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•南汇区二模)若函数f(x)=ax+1-2a在[-1,1]上存在x0,使f(x0)=0(x0≠±1),则a的取值范围是
1
3
,1)
1
3
,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•顺义区二模)设函数f(x)=
ax
x2+b
(a>0)

(1)若函数f(x)在x=-1处取得极值-2,求a,b的值;
(2)若函数f(x)在区间(-1,1)内单调递增,求b的取值范围;
(3)在(1)的条件下,若P(x0,y0)为函数f(x)=
ax
x2+b
图象上任意一点,直线l与f(x)的图象切于点P,求直线l的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•宝坻区一模)已知函数f(x)=ax3+bx2的图象经过点A(1,4),且在点A处的切线恰好与直线9x-y+3=0平行.
(Ⅰ)求实数a,b的值;
(Ⅱ)若函数f(x)在区间[m,m+1]上单调递增,求实数m的取值范围.

查看答案和解析>>

同步练习册答案