精英家教网 > 高中数学 > 题目详情
已知P:
x-1
x
≤0;q:4x+2x-m≤0且P是q的充分条件,则实数m的取值范围为
 
考点:必要条件、充分条件与充要条件的判断
专题:简易逻辑
分析:由条件命题p,q分别等价于集合{x|0<x≤1}与{x|0<x<3},由集合的包含关系可得答案.
解答: 解:命题p等价于集合{x|0<x≤1},
令f(x)=4x+2x-m,
若p是q的充分条件,
f(0)≤0
f(1)≤0

2-m≤0
6-m≤0

解得:m≥6,
故实数m的取值范围为[6,+∞),
故答案为:[6,+∞)
点评:判断充要条件的方法是:
①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;
②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;
③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;
④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.
⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知y=f(x)是R上的奇函数,且当x<0时,f(x)=x2+4x-1,求y=f(x)的解析式,画出y=f(x)的图象,并指出y=f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

等比数列{an}中,a11•a12=1,a15•a16=16,则a13•a14等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(Ⅰ)已知抛物线y2=2px(p>0),过点M(0,p)的直线l与抛物线交于A,B两点,且l与x轴交于点C,设
MA
=a
AC
MB
BC
,试问α+β是否为定值?若是,求出该定值;若不是,说明理由;
(Ⅱ)点P是抛物线C:y=
1
2
x2上一点,直线l过点P且与抛物线C交于另一点Q,若l不过原点且与x轴交于点S,与y轴交于点T,求
|ST|
|SP|
+
|ST|
|SQ|
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

过椭圆
x2
3
+y2=1的一个焦点F1的直线与椭圆交于A、B两点,则A、B与椭圆的另一焦点F2构成的△ABF2的周长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

用反证法证明命题:“一个三角形中不能有两个直角”的过程归纳为以下三个步骤:
①∠A+∠B+∠C=90°+90°+∠C>180°,这与三角形内角和为180°相矛盾,则∠A=∠B=90°不成立;
②所以一个三角形中不能有两个直角;
③假设∠A,∠B,∠C中有两个角是直角,不妨设∠A=∠B=90°.
正确顺序的序号排列为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,一个底面半径为R的圆柱被与其底面所成角为θ(0°<θ<90°)的平面所截,截面是一个椭圆,
当θ为30°时,这个椭圆的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

M,N是双曲线
x2
a2
-
y2
b
=1(a>0,b>0)上关于原点对称的两点,P是双曲线任意一点,直线PM和的PN斜率之积为
1
4
,则双曲线的离心率为(  )
A、2
B、
5
2
C、
6
2
D、
2
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个函数中,是奇函数且在区间(-1,0)上为减函数的是(  )
A、y=(
1
2
|x|
B、y=
x-4
2-x
C、y=log2|x|
D、y=-x3

查看答案和解析>>

同步练习册答案