精英家教网 > 高中数学 > 题目详情
已知函数f(x)=log2(1+x)+log2(1-x).
(1)判断函数f(x)的奇偶性,并说明理由;
(2)若f(x)=log2h(x),判断函数h(x)在(0,1)上的单调性,并用定义加以证明.
分析:(1)令
1+x>0
1-x>0
,求得函数的定义域关于原点对称,再根据f(-x)=f(x),可得函数f(x)为偶函数.
(2)由于f(x)=log2(1-x2)=log2h(x),可得h(x)=1-x2.再利用函数的单调性的定义证明函数h(x)在(0,1)上的单调性.
解答:解:(1)令
1+x>0
1-x>0
,求得-1<x<1,可得函数的定义域为(-1,1),关于原点对称.
再根据f(-x)=)=log2(1-x)+log2(1+x)=)=log2(1+x)+log2(1-x)=f(x),可得函数f(x)为偶函数.
 (2)由于f(x)=log2(1+x)+log2(1-x)=log2(1+x)(1-x)=log2(1-x2),且f(x)=log2h(x),
故有 h(x)=1-x2
设0<x1<x2<1,则h(x1)-h(x2)=(1-x12)-(1-x22)=x22-x12=(x2+x1)(x2-x1),
而由题设可得 (x2+x1)>0,(x2-x1)>0,∴h(x1)>h(x2),
故函数h(x)在(0,1)上是减函数.
点评:本题主要考查函数的奇偶性的判断,求函数的解析式,利用导数研究函数的单调性,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x-2+ae-x(a∈R)
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)当a=1时,若直线l:y=kx-2与曲线y=f(x)在(-∞,0)上有公共点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2|lnx-1|.
(1)求函数y=f(x)的最小值;
(2)证明:对任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2)(x1<x2),如果在函数f(x)图象上存在点M(x0,y0)(其中x0∈(x1,x2))使得点M处的切线l∥AB,则称直线AB存在“伴侣切线”.特别地,当x0=
x1+x2
2
时,又称直线AB存在“中值伴侣切线”.试问:当x≥e时,对于函数f(x)图象上不同两点A、B,直线AB是否存在“中值伴侣切线”?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线x+3y-1=0垂直,若数列{
1
f(n)
}的前n项和为Sn,则S2012的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)试就实数a的不同取值,写出该函数的单调增区间;
(2)已知当x>0时,函数在(0,
6
)上单调递减,在(
6
,+∞)上单调递增,求a的值并写出函数的解析式;
(3)记(2)中的函数图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案