精英家教网 > 高中数学 > 题目详情
已知n∈Z,f(n)=求f(5).

解:∵5<10,

∴f(5)=f[f(5+5)]=f[f(10)]=f(7)=f[f(12)]=f(9)=f[f(14)]=f(11)=11-3=8.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为R,当x>0时,f(x)>1,且对任意a,b∈R的,恒有f(a+b)=f(a)•f(b);
(1)求f(0)的值
(2)求证:当x<0时,0<f(x)<1
(3)求证:f(x)在(-∞,+∞)上为增函数;
(4)若f(1)=2,A={(m,n)|f(n)•f(2m-m2)>
2
,m,n∈Z},B={(m,n)|f(n-m)=16,m,n∈Z},求A∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)是定义在实数集R上的奇函数,且f(x)=-f(x+2),当0≤x≤2时,f(x)=
x
2
,若已知n∈Z,则使f(x)=-
1
2
成立的x的值为(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)是定义在实数集R上的奇函数,且f(x)=-f(x+2),当0≤x≤2时,f(x)=
x
2
,若已知n∈Z,则使f(x)=-
1
2
成立的x的值为(  )
A.2nB.2n-1C.4n+1D.4n-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)满足f(x)=

(1)分别写出x∈[0,1)时y=f(x)的解析式f1(x)和x∈[1,2)时y=f(x)的解析式f2(x);并猜想x∈[n,n+1],n≥-1,n∈Z时y=f(x)的解析式f n+1(x)(用x和n表示)(不必证明);

(2)当x=n+ (n≥-1,n∈Z)时,y=f n+1(x)x∈[n,n+1),(n≥-1,n∈Z)的图象上有点列A n+1(x,f(x))和点列B n+1(n+1,f(n+1)),线段A n+1B n+2与线段B n+1A n+2的交点C n+1,求点C n+1的坐标(a n+1(x),b n+1(x));

(3)在前面(1)(2)的基础上,请你提出一个点列C n+1(a n+1(x),b n+1(x))的问题,并进行研究,并写下你研究的过程.

查看答案和解析>>

同步练习册答案