精英家教网 > 高中数学 > 题目详情
8.如图,C是圆O的直径AB上一点,CD⊥AB,与圆O相交于点D,与弦AF交于点E,与BF的延长线相交于点G.GT与圆相切于点T.
(I)证明:CD2=CE•CG;
(Ⅱ)若AC=CO=1,CD=3CE,求GT.

分析 (I)延长DC与圆O交于点M,利用相交弦定理,三角形相似的性质,即可证明:CD2=CE•CG;
(Ⅱ)由(Ⅰ)得CG=3CD,利用切割线定理求GT.

解答 (Ⅰ)证明:延长DC与圆O交于点M,
因为CD⊥AB,
所以CD2=CD•CM=AC•BC,
因为Rt△ACE∽Rt△GBC,所以$\frac{AC}{CE}$=$\frac{CG}{BC}$,
即AC•BC=CE•CG,故CD2=CE•CG.…(5分)
(Ⅱ)解:因为AC=CO=1,所以CD2=AC•BC=3,
又CD=3CE,由(Ⅰ)得CG=3CD,
GT2=GM•GD=(CG+CM)•(CG-CD)=(CG+CD)•(CG-CD)
=CG2-CD2=8CD2=24,故GT=2$\sqrt{6}$.…(10分)

点评 本题考查相交弦定理,三角形相似的性质,考查切割线定理,考查相似分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=cos(asinx)-sin(bcosx)无零点,则a2+b2的取值范围为[0,$\frac{{π}^{2}}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=ex-aln(x+1)-1在点P(0,f(0))处的切线垂直于y轴.
(1)求函数f(x)的单调区间;
(2)当m>n>0时,求证;em-n-1>ln(m+1)-ln(n+1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=$\frac{ex}{{e}^{x}}$的导数为f'(x)(e为自然对数的底数).
(1)求函数f(x)的极大值;
(2)解方程f(f(x))=x;
(3)若存在实数x1,x2(x1≠x2)使得f(x1)=f(x2),求证:f($\frac{{x}_{1}+{x}_{2}}{2}$)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知二次函数f(x)=x2+ax+b对于任意x都有f(2-x)=f(2+x),且f(-1)=2,求a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.复数z满足i•z=1+i,其中i为虚数单位,则在复平面上复数z对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某电路如图所示,在某段时间内,开关A,B,C,D能接通的概率都是p,计算这段时间内电灯不亮的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD为平行四边形,∠ADB=90°,AB=2AD.
(Ⅰ)求证:平面PAD⊥平面PBD;
(Ⅱ)若PD=AD=1,$\overrightarrow{PE}$=2$\overrightarrow{EB}$,求二面角P-AD-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.圆x2+y2=4被直线l:kx-y-2k=0截得的劣弧所对的圆心角的大小为$\frac{π}{3}$,则直线l倾斜角的大小为$\frac{π}{3}$或$\frac{2π}{3}$.

查看答案和解析>>

同步练习册答案