精英家教网 > 高中数学 > 题目详情
如图,在四棱锥P-ABCD中,PD⊥平面ABCD,AD⊥CD,DB平分∠ADC,E为PC的中点,AD=CD=1,DB=2
(Ⅰ)证明PA∥平面BDE;
(Ⅱ)证明AC⊥平面PBD;
(Ⅲ)求直线BC与平面PBD所成的角的正切值.
(Ⅰ)证明:设AC∩BD=H,连结EH,
在△ADC中,因为AD= CD,且DB平分∠ADC,
所以H为AC的中点,
又由题设,E为PC的中点,故EH∥PA,
又EH平面BDE且PA平面BDE,
所以PA∥平面BDE.
(Ⅱ)证明:因为PD⊥平面ABCD,AC平面ABCD,
所以PD⊥AC,
由(Ⅰ)可得,DB⊥AC,
又PD∩DB =D,故AC⊥平面PBD.
(Ⅲ)由AC⊥平面PBD可知,BH为BC在平面PBD内的射影,
所以∠CBH为直线BC与平面PBD所成的角,
由 AD⊥CD,AD=CD=1,DB=2
可得
在Rt△BHC中,
所以直线BC与平面PBD所成的角的正切值为
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)证明AD⊥PB;
(2)求二面角P-BD-A的正切值大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,AB=4,PA=3,点A在PD上的射影为点G,点E在AB上,平面PEC⊥平面PDC.
(1)求证:AG∥平面PEC;
(2)求AE的长;
(3)求二面角E-PC-A的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
(Ⅰ)求证:平面PBD⊥平面PAC.
(Ⅱ)求四棱锥P-ABCD的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面是边长为a的菱形,∠ABC=60°PD⊥面ABCD,PC=a,E为PB中点
(1)求证;平面ACE⊥面ABCD;
(2)求三棱锥P-EDC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•武汉模拟)如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,BC∥AD,且∠BAD=90°,又PA⊥底面ABCD,BC=AB=PA=1,AD=2.
(1)求二面角P-CD-A的平面角正切值,
(2)求A到面PCD的距离.

查看答案和解析>>

同步练习册答案