ÒÑÖªº¯Êýf£¨x£©=x2-£¨a+2£©x+alnx£¬ÆäÖг£Êýa£¾0£®
£¨1£©µ±a£¾2ʱ£¬Çóº¯Êýf£¨x£©µÄµ¥µ÷µÝÔöÇø¼ä£»
£¨2£©µ±a=4ʱ£¬Èôº¯Êýy=f£¨x£©-mÓÐÈý¸ö²»Í¬µÄÁãµã£¬ÇómµÄȡֵ·¶Î§£»
£¨3£©É趨ÒåÔÚDÉϵĺ¯Êýy=h£¨x£©ÔÚµãp£¨x£¬h£¨x£©£©´¦µÄÇÐÏß·½³ÌΪl£ºy=g£¨x£©£¬µ±x¡Ùxʱ£¬ÈôÔÚDÄÚºã³ÉÁ¢£¬Ôò³ÆPΪº¯Êýy=h£¨x£©µÄ¡°Àà¶Ô³Æµã¡±£¬ÇëÄã̽¾¿µ±a=4ʱ£¬º¯Êýy=f£¨x£©ÊÇ·ñ´æÔÚ¡°Àà¶Ô³Æµã¡±£¬Èô´æÔÚ£¬Çë×îÉÙÇó³öÒ»¸ö¡°Àà¶Ô³Æµã¡±µÄºá×ø±ê£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
¡¾´ð°¸¡¿·ÖÎö£º£¨1£©f¡ä£¨x£©=2x-£¨a+2£©+=£¬ÓÉf¡ä£¨x£©£¾0ÄÜÇó³öf£¨x£©µÄµ¥µ÷µÝÔöÇø¼ä£»
£¨2£©µ±a=4ʱ£¬f£¨x£©=x2-6x+4lnx£¬f¡ä£¨x£©=2x+-6£¬ÆäÖÐx£¾0£¬ÓÉf¡ä£¨x£©=0Çó³ö¼«Öµµã£¬°Ñº¯Êýy=f£¨x£©-mÓÐÈý¸ö²»Í¬µÄÁãµãת»¯Îªº¯Êýy=f£¨x£©µÄͼÏóÓëÖ±Ïßy=mµÄ½»µãÎÊÌâ½â¾ö£»
£¨3£©µ±a=4ʱ£¬º¯Êýy=f£¨x£©ÔÚÆäͼÏóÉÏÒ»µãP£¨x£¬f£¨x£©£©´¦µÄÇÐÏß·½³ÌΪy=m£¨x£©=£®ÓÉ´ËÄÜÍÆµ¼³öy=f£¨x£©´æÔÚ¡°Àà¶Ô³Æµã¡±£¬ÊÇÒ»¸ö¡°Àà¶Ô³Æµã¡±µÄºá×ø±ê£®
½â´ð£º½â£º£¨1£©¡ßf£¨x£©=x2-£¨a+2£©x+alnx£¬
¡àf¡ä£¨x£©=2x-£¨a+2£©=£¬ÆäÖÐx£¾0£¬
Áîf'£¨x£©=0£¬µÃx=1»òx=£®
¡ßa£¾2£¬¡à£¾1£®
µ±0£¼x£¼1¼°x£¾Ê±£¬f'£¨x£©£¾0£»
µ±1£¼x£¼Ê±£¬f'£¨x£©£¼0£»
¡àf£¨x£©µÄµ¥µ÷µÝÔöÇø¼äΪ£¨0£¬1£©£¬£¨£¬+¡Þ£©£®
£¨2£©µ±a=4ʱ£¬f£¨x£©=x2-6x+4lnx£¬f¡ä£¨x£©=2x+-6==£¬ÆäÖÐx£¾0£¬
µ±x¡Ê£¨0£¬1£©£¬£¨2£¬+¡Þ£©Ê±£¬f¡ä£¨x£©£¾0£®
µ±x¡Ê£¨1£¬2£©Ê±£¬f¡ä£¨x£©£¼0£®
¡àf£¨x£©ÔÚx¡Ê£¨0£¬1£©£¬£¨2£¬+¡Þ£©Ê±ÎªÔöº¯Êý£¬
ÔÚx¡Ê£¨1£¬2£©Ê±Îª¼õº¯Êý£®
¡àf£¨x£©µÄ¼«´óֵΪf£¨1£©=-5£¬¼«Ð¡ÖµÎªf£¨2£©=4ln2-8£®
Ҫʹº¯Êýy=f£¨x£©-mÓÐÈý¸ö²»Í¬µÄÁãµã£¬¼´º¯Êýy=f£¨x£©µÄͼÏóÓëÖ±Ïßy=mÓÐÈý¸ö²»Í¬½»µã£¬
Èçͼ£¬ÔòmµÄȡֵ·¶Î§ÊÇ£¨4ln2-8£¬-5£©£®
£¨3£©ÓÉ£¨2£©Öª£¬µ±a=4ʱ£¬º¯Êýy=f£¨x£©ÔÚÆäͼÏóÉÏÒ»µãP£¨x£¬f£¨x£©£©´¦µÄÇÐÏß·½³ÌΪ£º
y=m£¨x£©=£¬
Éè¦Õ£¨x£©=f£¨x£©-m£¨x£©=£¬
Ôò¦Õ£¨x£©=0£®
ϕ¡ä£¨x£©=2x+-6-£¨2x+-6£©=2£¨x-x£©£¨1-£©=£¨x-x£©£¨x-£©
Èôx£¼£¬¦Õ£¨x£©ÔÚ£¨x£¬£©Éϵ¥µ÷µÝ¼õ£¬
¡àµ±x¡Ê£¨x£¬£©Ê±£¬¦Õ£¨x£©£¼¦Õ£¨x£©=0£¬´Ëʱ£¼0£»
Èô£¬¦Õ£¨x£©ÔÚ£¨£¬x£©Éϵ¥µ÷µÝ¼õ£¬
¡àµ±x¡Ê£¨£¬x£©Ê±£¬¦Õ£¨x£©£¾¦Õ£¨x£©=0£¬´Ëʱ£¼0£®
¡ày=f£¨x£©ÔÚ£¨0£¬£©¡È£¨£¬+¡Þ£©Éϲ»´æÔÚ¡°Àà¶Ô³Æµã¡±£®
Èô£¬£¾0£¬
¡à¦Õ£¨x£©ÔÚ£¨0£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£¬
µ±x£¾xʱ£¬¦Õ£¨x£©£¾¦Õ£¨x£©=0£¬
µ±x£¼xʱ£¬¦Õ£¨x£©£¼¦Õ£¨x£©=0£¬¹Ê£¾0£®
¼´´ËʱµãPÊÇy=f£¨x£©µÄ¡°Àà¶Ô³Æµã¡±
×ÛÉÏ£¬y=f£¨x£©´æÔÚ¡°Àà¶Ô³Æµã¡±£¬ÊÇÒ»¸ö¡°Àà¶Ô³Æµã¡±µÄºá×ø±ê£®
µãÆÀ£º±¾Ì⿼²éº¯ÊýµÄµ¥µ÷ÔöÇø¼äµÄÇ󷨣¬Ì½Ë÷Âú×㺯ÊýÔÚÒ»¶¨ÁãµãϵIJÎÊýµÄÇ󷨣¬Ì½Ë÷º¯ÊýÊÇ·ñ´æÔÚ¡°Àà¶Ô³Æµã¡±£®½âÌâʱҪÈÏÕæÉóÌ⣬עÒâ·ÖÀàÌÖÂÛ˼ÏëºÍµÈ¼Ûת»¯Ë¼ÏëµÄºÏÀíÔËÓ㬴ËÌâÊÇÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÒÑÖªº¯Êýf£¨x£©=Asin£¨¦Øx+¦Õ£©£¨x¡ÊR£¬A£¾0£¬¦Ø£¾0£¬|¦Õ|£¼
¦Ð
2
£©µÄ²¿·ÖͼÏóÈçͼËùʾ£¬Ôòf£¨x£©µÄ½âÎöʽÊÇ£¨¡¡¡¡£©
A¡¢f(x)=2sin(¦Ðx+
¦Ð
6
)(x¡ÊR)
B¡¢f(x)=2sin(2¦Ðx+
¦Ð
6
)(x¡ÊR)
C¡¢f(x)=2sin(¦Ðx+
¦Ð
3
)(x¡ÊR)
D¡¢f(x)=2sin(2¦Ðx+
¦Ð
3
)(x¡ÊR)

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•ÉîÛÚһ죩ÒÑÖªº¯Êýf(x)=
1
3
x3+bx2+cx+d
£¬ÉèÇúÏßy=f£¨x£©ÔÚÓëxÖá½»µã´¦µÄÇÐÏßΪy=4x-12£¬f¡ä£¨x£©Îªf£¨x£©µÄµ¼º¯Êý£¬ÇÒÂú×ãf¡ä£¨2-x£©=f¡ä£¨x£©£®
£¨1£©Çóf£¨x£©£»
£¨2£©Éèg(x)=x
f¡ä(x)
 £¬ m£¾0
£¬Çóº¯Êýg£¨x£©ÔÚ[0£¬m]ÉϵÄ×î´óÖµ£»
£¨3£©Éèh£¨x£©=lnf¡ä£¨x£©£¬Èô¶ÔÒ»ÇÐx¡Ê[0£¬1]£¬²»µÈʽh£¨x+1-t£©£¼h£¨2x+2£©ºã³ÉÁ¢£¬ÇóʵÊýtµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•ÉϺ£Ä£Ä⣩ÒÑÖªº¯Êýf(x)=(
x
a
-1)2+(
b
x
-1)2£¬x¡Ê(0£¬+¡Þ)
£¬ÆäÖÐ0£¼a£¼b£®
£¨1£©µ±a=1£¬b=2ʱ£¬Çóf£¨x£©µÄ×îСֵ£»
£¨2£©Èôf£¨a£©¡Ý2m-1¶ÔÈÎÒâ0£¼a£¼bºã³ÉÁ¢£¬ÇóʵÊýmµÄȡֵ·¶Î§£»
£¨3£©Éèk¡¢c£¾0£¬µ±a=k2£¬b=£¨k+c£©2ʱ£¬¼Çf£¨x£©=f1£¨x£©£»µ±a=£¨k+c£©2£¬b=£¨k+2c£©2ʱ£¬¼Çf£¨x£©=f2£¨x£©£®
ÇóÖ¤£ºf1(x)+f2(x)£¾
4c2
k(k+c)
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£ºÉϺ£Ä£Äâ ÌâÐÍ£º½â´ðÌâ

ÒÑÖªº¯Êýf(x)=(
x
a
-1)2+(
b
x
-1)2£¬x¡Ê(0£¬+¡Þ)
£¬ÆäÖÐ0£¼a£¼b£®
£¨1£©µ±a=1£¬b=2ʱ£¬Çóf£¨x£©µÄ×îСֵ£»
£¨2£©Èôf£¨a£©¡Ý2m-1¶ÔÈÎÒâ0£¼a£¼bºã³ÉÁ¢£¬ÇóʵÊýmµÄȡֵ·¶Î§£»
£¨3£©Éèk¡¢c£¾0£¬µ±a=k2£¬b=£¨k+c£©2ʱ£¬¼Çf£¨x£©=f1£¨x£©£»µ±a=£¨k+c£©2£¬b=£¨k+2c£©2ʱ£¬¼Çf£¨x£©=f2£¨x£©£®
ÇóÖ¤£ºf1(x)+f2(x)£¾
4c2
k(k+c)
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£ºÉîÛÚһģ ÌâÐÍ£º½â´ðÌâ

ÒÑÖªº¯Êýf(x)=
1
3
x3+bx2+cx+d
£¬ÉèÇúÏßy=f£¨x£©ÔÚÓëxÖá½»µã´¦µÄÇÐÏßΪy=4x-12£¬f¡ä£¨x£©Îªf£¨x£©µÄµ¼º¯Êý£¬ÇÒÂú×ãf¡ä£¨2-x£©=f¡ä£¨x£©£®
£¨1£©Çóf£¨x£©£»
£¨2£©Éèg(x)=x
f¡ä(x)
 £¬ m£¾0
£¬Çóº¯Êýg£¨x£©ÔÚ[0£¬m]ÉϵÄ×î´óÖµ£»
£¨3£©Éèh£¨x£©=lnf¡ä£¨x£©£¬Èô¶ÔÒ»ÇÐx¡Ê[0£¬1]£¬²»µÈʽh£¨x+1-t£©£¼h£¨2x+2£©ºã³ÉÁ¢£¬ÇóʵÊýtµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸