精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1
3
x3-
1
2
(a+2)x2+bx+1

(1)当b=2a时,求函数f(x)的极值?
(2)已知b>0,且函数f(x)在区间(0,2]上单调递增,试用b表示出a的取值范围.
分析:(1)把b=2a代入到f(x)中,求出f'(x)=0时x的值,利用a的范围讨论函数的增减性得到函数的极值;
(2)因为函数f(x)在区间(0,2]上单调递增,所以f'(x)=x2-(a+2)x+b≥0对x∈(0,2]恒成立,即a≤x+
b
x
-2
恒成立,设g(x)=x+
b
x
-2
,求出导函数利用b的取值范围讨论函数的增减性得到g(x)的最小值,a小于等于最小值,列出不等式求出a的取值范围.
解答:解:(1)当b=2a时,f(x)=
1
3
x3-
1
2
(a+2)x2+2ax+1

所以f'(x)=x2-(a+2)x+2a=(x-2)(x-a).令f'(x)=0,得x=2,或x=a.
①若a<2,则当x∈(-∞,a)时,f'(x)>0;当x∈(a,2)时,f'(x)<0;当x∈(2,+∞)时,f'(x)>0.
所以f(x)在(-∞,a)上单调递增,在(a,2)上单调递减,在(2,+∞)上单调递增.此时当x=a时,f(x)有极大值f(a)=-
1
6
a3+a2+1
;当x=2时,f(x)有极小值f(2)=2a-
1
3

②若a=2,则f'(x)=(x-2)2≥0,所以f(x)在(-∞,+∞)上单调递增,此时f(x)无极值.
③若a>2,则当x∈(-∞,2)时,f'(x)>0;当x∈(2,a)时,f'(x)<0;当x∈(a,+∞)时,f'(x)>0.
所以f(x)在(-∞,2)上单调递增,在(2,a)上单调递减,在(a,+∞)上单调递增.此时当x=2时,f(x)有极大值f(2)=2a-
1
3
;当x=a时,f(x)有极小值f(a)=-
1
6
a3+a2+1

(2)解:因为函数f(x)在区间(0,2]上单调递增,所以f'(x)=x2-(a+2)x+b≥0对x∈(0,2]恒成立,
a≤x+
b
x
-2
对x∈(0,2]恒成立,所以a≤(x+
b
x
-2)min,x∈(0,2]

g(x)=x+
b
x
-2,x∈(0,2]
,则g′(x)=1-
b
x2
=
(x+
b
)(x-
b
)
x2
(b>0),
①若0<
b
<2
,即0<b<4,则当x∈(0,
b
)
时,g'(x)<0;当x∈(
b
,2]
时,f'(x)>0.
所以g(x)在(0,
b
)
上单调递减,在(
b
,2]
上单调递增.
所以当x=
b
时,g(x)有最小值g(
b
)=2
b
-2
,所以当0<b<4时,a≤2
b
-2

②若
b
≥2
,即b≥4,则当x∈(0,2]时,g'(x)≤0,所以g(x)在(0,2]上单调递减,
所以当x=2时,g(x)有最小值g(2)=
b
2
,所以当b≥4时,a≤
b
2

综上所述,当0<b<4时,a≤2
b
-2
;当b≥4时,a≤
b
2
点评:考查学生利用导数研究函数极值的能力,利用导数研究函数的单调性,以及会利用分类讨论的数学思想解决数学问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)、已知函数f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函数f(x)=2cos2x-2
3
sinxcosx
的图象按向量
m
=(
π
6
,-1)
平移后,得到一个函数g(x)的图象,求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1-
a
x
)ex
,若同时满足条件:
①?x0∈(0,+∞),x0为f(x)的一个极大值点;
②?x∈(8,+∞),f(x)>0.
则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(1)如果a>0,函数在区间(a,a+
1
2
)
上存在极值,求实数a的取值范围;
(2)当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
与f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x)如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=
1-m•2x1+m•2x

(1)m=1时,求函数f(x)在(-∞,0)上的值域,并判断f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,1]上是以3为上界的有界函数,求m的取值范围.

查看答案和解析>>

同步练习册答案