精英家教网 > 高中数学 > 题目详情
已知等差数列{an}为递增数列,且a2,a5是方程x2-12x+27=0的两根,数列{bn}的前n项和Tn=1-
1
2
bn

(1)求数列{an}和{bn}的通项公式;
(2)若cn=
3nbn
anan+1
,sn为数列{cn}的前n项和,证明:sn<1
(Ⅰ)由题意得a2=3,a5=9
公差d=
a5-a2
5-2
=2
   (2分)
所以an=a2+(n-2)d=2n-1  (4分)
Tn=1-
1
2
bn得n=1时b1=
2
3
   
n≥2时bn=Tn-Tn-1=
1
2
bn-1-
1
2
bn
(6分)
bn=
1
3
bn-1
所以bn=
2
3n
(8分)

(Ⅱ)由(Ⅰ)得cn=
3nbn
anan+1
=
2
(2n-1)(2n+1)
=
1
2n-1
-
1
2n+1

∴sn=c1+c2+c3++cn=(
1
1
-
1
3
)+(
1
3
-
1
5
)+(
1
5
-
1
7
)+…+(
1
2n-1
-
1
2n+1
)

=1-
1
2n+1
<1(12分)

∴Sn<1
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an},公差d不为零,a1=1,且a2,a5,a14成等比数列;
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=an3n-1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中:a3+a5+a7=9,则a5=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足:a5=11,a2+a6=18.
(1)求{an}的通项公式;
(2)若bn=an+q an(q>0),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足a2=0,a6+a8=-10
(1)求数列{an}的通项公式;     
(2)求数列{|an|}的前n项和;
(3)求数列{
an2n-1
}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知等差数列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若{an}为递增数列,请根据如图的程序框图,求输出框中S的值(要求写出解答过程).

查看答案和解析>>

同步练习册答案